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Exercise 1. From Coupled Oscillators to Wave Equation

Consider a ring of N masses m free to oscillate about their respective equilibrium positions,
coupled by springs of spring constant κ. Let φk denote the displacement of the k-th mass from
its equilibrium position. We impose periodic boundary conditions, i.e.: φk+N = φk and neglect
the curvature of the chain, such that it behaves as a 1D chain of masses where the last mass
couples to the first.

Figure 1: A ring of N masses

i) Show that the Lagrangian of the system is given by:

L =

N∑
k=1

(
1

2
mφ̇2k −

1

2
κ(φk − φk+1)

2

)
Be especially careful not to overcount the potential terms twice, i.e. note that:

N∑
k=1

1

2
κ((φk − φk+1)

2 + (φk − φk−1)2) =
N∑
k=1

κ(φk − φk+1)
2

since you can shift the indices under the sum thanks to the boundary conditions (convince
yourself about it).

ii) Convince yourself that the equation of motion for the k-th mass is given by:

φ̈k =
κ

m
(φk−1 − 2φk + φk+1)

If in doubt, use force!

iii) Make an ansatz for the solution of the form φk ∝ exp(i(ςk + ωt)), where ς, ω are constants
that can be interpreted as wavenumber and (angular) frequency respectively (why?). Find the
expression for ω by inserting your ansatz into the equations. You should find:

ω = ±2

√
κ

m

∣∣∣sin( ς
2

)∣∣∣
Note 1: This tells you that for every choice of ς, there are two ω frequency solutions (with the
exception of ς = 0 for which the solutions are degenerate), one traveling to the “left” and the
other to the “right”. You should give an argument for what the “traveling” means.
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iv) By recalling that we are dealing with a string of masses and therefore φk+N = φk, convince
yourself that there is a countably finite set of allowed ς.

Note 2: These correspond to different normal frequencies of your chain - and each ansatz func-
tion with such allowed ς corresponds to a normal mode on your chain.

v) Consider N → ∞, while keeping the overall circumference of the mass ring constant. In
such case a→ 0 and one can approximate the index k by a continuous position “label” x = ka:
φk(t)→ φ(ka, t) = φ(x, t). Convince yourself that the equation of motion now reads:

∂2φ(x, t)

∂t2
=

κ

m
(φ(x− a, t)− 2φ(x, t) + φ(x+ a, t))

iv) Taylor expand φ(x± a) around x to the second order to show that:

∂2φ(x, t)

∂t2
=
κa2

m

∂2φ(x, t)

∂x2

Consider a case where κ → ∞ as we go to a → 0, in a way that κa2

m = const. = 1
c2

. Have you
seen such equation before? What is the interpretation of the constant c? Can you justify your
motivation by some clever argument? If you are keen enough, check that f(x± ct) is a solution
to this equation for any sufficiently smooth function f .

Note 3: If you cannot recall the equation, remind yourself what a wave equation looks like, as
you will use it (with some damping/dissipative term) in one of the following exercises.

Note 4: The coupled harmonic oscillator chain is a standard way to give a motivation for a
notion of field. As you will see in your advanced courses such as General Relativity or Quantum
Field Theory, the field viewpoint provides enormous insight into a lot physical phenomena.

Exercise 2. Moments of inertia

The Huygens-Steiner theorem (sometimes also known as “parallel axis theorem”) is an easy-to-
prove result that relates moments of inertia for rotations of the same rigid body around any axis
to the one around a parallel axis through its center of mass.

a) Let Ia be the moment of inertia of a rigid body with mass m for rotations around an axis
a that goes through its center of mass. Show that the moment of inertia Ib for rotations
around any axis b parallel to a can be obtained from Ia through the formula

Ib = Ia +MR2, (1)

where R is the distance between a and b.

b) Compute the moment of inertia for a uniform ball of mass M and radius R with respect
to an axis that goes through its center. Then use the Huygens-Steiner theorem to see how
the result changes when the ball rotates around an axis at R/2 from its center.

c) Compute the moment of inertia for a thin spherical shell of mass M and radius R with
respect to an axis passing through its center. Compare with the previous result.

d) Compute the moment of inertia for a spherical cloud of mass M and density proportional
to e−r, always with respect to an axis through its center.
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Exercise 3. Oscillating string with friction.

A uniform string has length L and mass per unit length ρ. It undergoes small transverse vibration
in the (x, y) plane with its endpoints held fixed at (0, 0) and (L, 0) respectively. The tension
is K. The string is subject to a small velocity-dependent frictional force −kvδl to each small
piece of length δl with transverse velocity v. Using appropriate approximations, the following
equations hold for the vibration amplitude y(x, t):

∂2y

∂t2
+ a

∂y

∂t
= b

∂2y

∂x2
(2)

y(0, t) = 0 = y(L, t) (3)

(a) Find the constants a and b in (2).

(b) Find all solutions of (2) and (3) which have the product form y = X(x)T (t). You may
assume a2 < b/L2.
(Hint: The wave equation (2) is separable, i.e. it can be written as F (X ′′, X ′, X, x) =
G(T ′′, T ′, T, t). In order for the equation to hold for all x and t, each side must be equal to
a constant, which is taken as −λ2. Solve the two equations for T (t) and X(x) separately,
using the boundary conditions (3).)
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