
Quantum Thermodynamics

In this chapter we wish to give some insights to quantum thermodynamics. It
can be seen as an introduction to the topic, however not a broad one but rather
an introduction by examples. More specifically, we will pick particular topics
and concepts through which it is possible to illustrate how information theoretic
viewpoints can illuminate problems in thermodynamics.

The topics treated in the following include Landauer’s principle, Szilard
engines and different ways of interpreting them thermodynamically, the subjec-
tive definition of thermodynamic entropy and the emergence of thermalization
in closed systems. It is important to note that for the topics concerning Lan-
dauer’s principle, Szilard engines and entropy the word ‘quantum’ in the title
is not so important. Only when it comes to thermalization we will see purely
quantum features in our considerations. Nevertheless, we will use the formalism
of density operators to describe all systems, classical and quantum.1

1 Landauer’s Principle

Erasing a two-level system is the task of resetting the current state to a reference
state, say |0〉. The mechanism implementing this state change must work inde-
pendently of the initial state of the system. Landauer’s principle states that no
matter how you implement an erasure process, if it happens in an environment
at temperature T then it has a minimal work cost of kBT ln 2, where kB is the
Boltzmann constant. This principle can be seen as a consequence of the second
law of thermodynamics, as pointed out below in Section 2.2.

1.1 Work cost of erasure

Before going into more detail what an erasure process might look like in Section
1.3 we give a more quantitative version of Landauer’s principle for more general
cases than just two-level systems. For illustrative purposes though we restrict
ourselves to n-bit strings, i.e. multiple two-level systems that can be processed
globally. Let X be a random variable describing this n-bit string and PX be the
distribution according to which X is distributed. Furthermore, let 000 · · · 0 be
the reference state to which we want to bring the system by erasing it. What
is the best way of doing so? Doing it näıvely by erasing each bit individually
would have a work cost of nkBT ln 2. However, this is not optimal as we will
see now.

1Because we can.
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In fact, we can use a basic result from source coding (see Exercise Sheet 4)
stating that the information contained in n bits with distribution PX can be
reversibly compressed to m = Hmax(X)PX bits while transforming the remain-
ing n−m bits to the state 00 · · · 0. Now it is of course more favourable to erase
only m out of n bits with a work cost of mkBT ln 2. We thus end up with the
more general result that erasure of a bit string described by X ∼ PX can be
done with a work cost of

Hmax(X)PX kBT ln 2. (1)

A few remarks are in order. First, we assumed that the reversible compres-
sion step has no work cost, which is indeed the case in an optimal implemen-
tation. After all, compression boils down to the implementation of a bijective
function from {0, 1}n to {0, 1}n which, by a simple argument given in the lec-
ture, can be done without investing work. Second, although not proved here,
one can show that this work cost is in fact optimal and extends directly to any
(classical) system with finitely many states.2 Finally, it might be the case that
the erasure process is allowed to fail with probability ε. Failure here means
that the final state is not 000 · · · 0. Then again we can make use of results from
source coding, telling us that the number of bits needed to compress the content
of X is Hε

max(X)PX , the smoothed max-entropy. Consequently, the work cost
can be reduced to Hε

max(X)PX kBT ln 2 in this setting.
Interestingly we find that Hmax, initially a quantity used only in informa-

tion theory, is the relevant thermodynamic entropy to describe the work cost of
erasure. Thus the information theoretic viewpoint on thermodynamics is not
just another way of looking at it, but is actually adding new insights.

1.2 I.i.d. limit

When having access to many, say k, copies of the same systemX ∼ PX , applying
the above result directly yields a work cost of erasure ofHmax(X×k)P×k

X
kBT ln 2.

By the asymptotic equipartition theorem this relaxes to kH(X)PX kBT ln 2 in
the limit k →∞, where H is now the Shannon entropy. Hence, on average the
relevant thermodynamic entropy is the Shannon entropy in this setting.

1.3 Work extraction from a pure qubit

The opposite of erasure is work extraction. In this task one starts with a well
known (pure) state and transforms it into a mixed state while extracting work.
To make the rather abstract discussion above more explicit we present a setting
below in which work extraction can be described. Letting the process described
below run backwards is one way of implementing erasure with an optimal work
cost.

We shortly describe a setting with which optimal average work extraction,
the ‘opposite’ of erasure, from a pure qubit can be made explicit. This example
can easily be generalized to pure d-dimensional systems. Starting with a qubit in
state ρ = |0〉〈0| with degenerate HamiltonianH = E0, we make the assumptions:

2It also extends to quantum systems of finite dimension, as can be shown e.g. by combining
results from del Rio et al., Nature 10123 (2011) and Faist et al., Nature Commun. 6 7669
(2015).
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Figure 1: The setting consists of a system, here a qubit, initially in a pure
state, and a heat bath. The bath itself is not further specified. Instead, its
action in the system is described: when brought into contact with the bath the
system thermalizes its state to the Gibbs state of the current Hamiltonian. The
different panels are mentioned and described in the text.

• The energy difference between the energy eigenstates of the system (here
denoted by |0〉 and |1〉) can be changed arbitrarily by changing the Hamil-
tonian of the system.

• Raising an energy level that is populated with probability p by energy dE
costs work p dE. If dE is negative this corresponds to lowering the energy
of that state and work can be extracted.

• There is a heat bath at temperature T . Letting our system (here qubit)

interact with it changes its current state to the Gibbs state τ = e−βH

tr[e−βH ]
,

where β = 1
kBT

is the inverse temperature, kB is the Boltzmann constant
and H is the current Hamiltonian of the system.

Working in this paradigm we now carry out two steps depicted in Fig. 1 as
a) and b). In step a we raise the unoccupied level |1〉 to a very high energy
E1. Later we let E1 →∞. This has no work cost nor a work gain, because the
initial state is ρ = |0〉〈0|. Then, in step b, we alternately connect the qubit to the
thermal bath at temperature T and lower the energy of state |1〉 infintesimally
by dE. If the current eigenenergy of |1〉 is E, then the probability for being in
this state is p(E) = e−β(E−E0)/(1+e−β(E−E0)). Hence the total work extracted
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in this step if we start at E1 and go back to the initial configuration at E0 is

Wext = −
∫ E0

E1

p(E) dE

=

∫ E1−E0

0

e−βE

1 + e−βE
dE

= kBT
[
ln 2− ln

(
1 + e−β(E1−E0)

)]
E1→∞−→ kBT ln 2 .

(2)

We find that if the eigenenergy of |1〉 approaches ∞ after step a, then the
extracted work can be arbitrarily close to the optimal value, kBT ln 2. Further-
more, the final state, depicted in c) of Fig. 1, is maximally mixed, ρ = 1

2 . This
makes sense, as the last thermalization step happens when the Hamiltonian is
degenerate again. The Gibbs state of a system with degenerate Hamiltonian is
fully mixed.

2 Szilard engine

Another paradigmatic example, proposed by Leo Szilard in 1929, that links
information and thermodynamics is nowadays called Szilard engine. Szilard
proposed a machine that seemingly produces work in a cyclic process while
having access to only one heat bath. If this was possible it would be a violation
of the second law of thermodynamics. In the following, we present the machine,
describe its cycle, and analyse it from different perspectives to show that the
second law is not violated by this machine. Also, the coming analysis emphasizes
the subjectivity of thermodynamic statements.

A Szilard engine consists of a box with one particle inside, see the black
boxes in Fig. 2. The box can be partitioned into two equal halves and it is in
an environment (heat bath) at temperature T that thermalizes the box at all
times. If the wall partitioning the box is moved by the particle, a weight can
be attached to extract work during that process.3 If work is extracted in this
way in an isothermal process at temperature T , classical thermodynamics tells
us that the extracted work for an N -particle ideal gas amounts to

Wext = −
∫ V

V/2

−p dV
pV=NkBT

=

∫ V

V/2

NkBT

V
= NkBT ln 2 . (3)

For our ideal one-particle gas this is kBT ln 2.
A Szilard engine now operates in the following way: first a wall is inserted

to partition the box into two halves. Since initially the particle could have been
everywhere. It is then measured where the particle is, the outcome being ‘L’
(left) or ‘R’ (right). This information can be used to either turn the box around
(if the outcome was ‘R’) or not (if it was ‘L’). Attaching the weight on the left
side as shown in Fig. 2 consequently allows us to extract kBT ln 2 work. The
final state of the box will be the same as the initial one and everything happened
at one temperature T .

3Of course, if the particle pushes the wall from the other side in this setting, the weight
will be lowered and work is lost.
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Figure 2: The working cycle of a Szilard engine. a) After inserting the partition
it is not known on which side of the wall the particle is. b) Measuring allows us
to find out about the position of the particle. c) Using the information gained in
the measurement we can attach a weight on the correct side of the box such that
letting the one-particle gas expand isothermally allows us to extract kBT ln 2
work. d) After the work extraction step the initial state of the box is restored.
Here, every step happens at one and the same temperature T , all processes are
assumed to be isothermal.

Since a measurement can be carried out at no work cost the work balance
of this seemingly cyclic process tells us that in each cycle kBT ln 2 is extracted
and no work is invested. So where is the problem?

2.1 Resolving the paradox

In fact, when we say that it is measured on which side of the wall the particle is,
and that this information is used later on, we imply that there is a memory that
stores this bit (information). Taking this memory into account, the analysis
changes fundamentally because resetting (erasing) a random bit has a work
cost. To see this, consider an agent A with a device storing this information.
The box itself, essentially a two-level system, shall be denoted by B from now
on. Initially the state of the Agent’s device is idle, denoted by ‘⊥’. After the
measurement it can either be ‘L’ or ‘R’. We consider the states of the agent and
the device in the three situations after step a (upper right), after step b (lower
right) and after step d (upper left), see Fig. 2. We do so from three different
views that will be analysed in detail.

View 1. Consider only B while ignoring A, in particular ignoring the micro-
scopic knowledge accessible to A. The entropy of (uncertainty about) B in each
of the relevant situations is then:

after a: The particle is equally likely to be on the left or on the right, hence
H(B) = 1.
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after b: The agent’s knowledge is explicitly not taken into account. Thus
the entropy of B has not changed and stays H(B) = 1.

after d: As argued above after this step the box is again in its initial state
and the entropy is H(B) = 1.

So what exactly happened in between these situations? In step b the position
of the particle is measured. But when restricting our view to B only, this is
measuring without storing the outcome. Then in steps c and d work should be
extracted. But in this view this is not possible because the information about
the outcome of the measurement is needed to do so. In other words, the work
extraction process acts on both A and B, not only on B. Hence, in this view
one cannot talk about the work extraction step. We emphasize that this does
not mean that view 1 is bad in any way. On the contrary, it shows that, as
long as one respects that work extraction is impossible within this view, no
contradiction with the second law arises.

View 2. We now consider B from the agent’s point of view, in particular
taking microscopic knowledge of A about B into account. The uncertainty
about B in the relevant situations is:

after a: At this point A has no more information about B than we had before,
so H(B|A) = 1.

after b: Now A stores the outcome of the position measurement, thus reduc-
ing the uncertainty about B to the minimum: H(B|A) = 0.

after d: After this step A has used her knowledge about the state of B
to extract work, leaving B in the mixed initial state. The agent now no
longer knows whether the particle is to the left or to the right of the wall,
H(B|A) = 1.

In steps c and d the usual work extraction procedure happens, which can be de-
scribed from A’s perspective. Thereby, the agent’s knowledge is used to extract
kBT ln 2 work while increasing the entropy of B. However, now the problem
occurs in step b. When the measurement happens this affects not only B but
also A. But from the viewpoint of the agent it is impossible to describe changes
to herself, this can only be done from outside.4 Opposite to the previous view,
in this view the analysis can be done for the work extraction step but not for
the measurement step. Again, no contradiction with the second law arises.

View 3. Now we describe A and B from outside together.

after a: Here H(AB) = H(A) + H(B|A) = 0 + 1 = 1 because A is initially
in the idle state ‘⊥’ and has no knowledge of B’s state.

after b: Now A stores the outcome of the position measurement, thus reduc-
ing the uncertainty about B . But at the same time looking at it from outside,
the reduced state of A is fully mixed because both outcomes are equally likely,
so H(AB) = H(A) +H(B|A) = 1 + 0 = 1.

4For instance, a global correlated states like 1
2
|L〉〈L|A ⊗ |L〉〈L|B + 1

2
|R〉〈R|A ⊗ |R〉〈R|B

makes sense from outside, but not when describing things from the point of view of A.
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after d: After extracting work the state of the memory, i.e. of A, has not
changed. On the other hand, A has no longer an accurate description of B,
so we have H(AB) = H(A) +H(B|A) = 1 + 1 = 2.

From an outside view we can describe both steps accurately. During the mea-
surement5 correlations between A and B are built up. During work extraction
information in A about B is used, but the state of A is not changed. Afterwards,
B is again in the initial state and its entropy increased. Since our description
now involves both systems, also this step can be described.

We emphasize that neither in the third view is the second law violated. The
entropy of the total system, on which work extraction is performed, increases
during the process by one bit.

2.2 Discussion

In neither of the three views inconsistencies arise, nor is any of them violating
the second law. Only the third view can describe both steps which is why we
use it to resolve the apparent paradox raised by the Szilard engine. Obviously,
in this view, the entropy increased throughout the cycle of steps a–d. Hence the
overall final state cannot be the same as the initial one. Instead of

| ⊥〉〈⊥ |A ⊗ ( 1
2 |L〉〈L|B + 1

2 |R〉〈R|B)

it is

( 1
2 |L〉〈L|A + 1

2 |R〉〈R|A)⊗ ( 1
2 |L〉〈L|B + 1

2 |R〉〈R|B) .

To make it a cyclic process a fifth step, say e, resetting A would be necessary.
This step is erasure and, if the second law holds, must have a minimal work
cost of kBT ln 2 if it happens at temperature T . Thus Landauer’s principle is
a necessary consequence of the second law of thermodynamics. The net work
gain of the cyclic process is therefore

W tot
ext = kBT ln 2− kBT ln 2 = 0 , (4)

in accordance with the second law.

Why did the paradox show up in the first place even though all of the above
views, if treated properly, are consistent? It is because often näıvely one jumps
between view 1 and 2 without noticing. When doing so, the step describable
in view 1 is seen as measuring and storing the outcome, even though there is
no memory. Then one switches to view 2, where work extraction has a proper
description, and concludes that in total work was extracted and all systems are
returned in their initial state. So changing views can lead to inconsistencies
even though each view in itself is consistent.

An analogous explanation can be used to resolve Maxwell’s demon paradox
or Gibbs paradox (see exercises).

5The measurement is essentially a CNOT operation, where B is the control bit and A the
target bit. In our case it changes the initial state | ⊥〉〈⊥ |A ⊗ ( 1

2
|L〉〈L|B + 1

2
|R〉〈R|B) to

1
2
|L〉〈L|A ⊗ |L〉〈L|B + 1

2
|R〉〈R|A ⊗ |R〉〈R|B .
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2.3 Further remarks

So far we assumed that both the Szilard engine and the agent are in the same
environment and thus operate at the same temperature. What if the box B is
held at temperature TB and the memory of the agent at TA? If TA < TB the
work needed to erase the memory would be smaller than the work extracted
during the expansion of the one-particle gas and the cycle would yield a net
work gain. However, this does not contradict the second law either because now
there are two heat baths instead of just one and a net heat flow from the hot
to the cold bath. This net heat flow is analogous to the heat flow from hot to
cold in thermal machines.

More generally, in this case one could define an efficiency of the ‘information
driven’ thermal machine as

η =
extracted work− invested work

invested work
=
kBTB ln 2− kBTA ln 2

kBTA ln 2
=
TB
TA
− 1 .

(5)

There are three regimes in which such a machine can work:

TA = TB : This case has been treated above and we effectively found η = 0.
Hence the process neither produces work nor uses work to do some other task.

TA < TB : Here, the work cost for erasure is smaller than the work extracted,
which corresponds to the situation described in the above paragraph. There-
fore we have η > 0 and the ‘information driven’ engine essentially acts as a
heat engine, producing work while letting heat flow from a hot to a cold bath.

TA > TB : If the work cost for erasure surmounts the amount of extracted work
it follows that η < 0. Now the machine acts a refrigerator (or, equivalently, a
heat pump) pumping heat from the cold bath to the warmer one.

All in all, through the Szilard engine we found an information theoretic descrip-
tion of thermal engines which can operate in different regimes as heat engines
or refrigerators / heat pumps.

2.4 Remark on the objectivity of thermodynamic entropy

In traditional thermodynamics it is usually assumed that entropy is an objective
quantity. This seemingly follows from the operational definition of thermody-
namic entropy as

δS =
dQrev

T
, (6)

the quotient of the reversibly exchanged heat dQrev and the temperature T .
Both heat and temperature are measurable quantities and thus two agents doing
the same experiment should get the same outcomes.

On the other hand we argued above that one can have different views on
thermodynamic processes and, depending on which view we take on, different
entropies are relevant. However, the above analysis was conducted from an
information theoretic perspective and it remains open whether one could also
arrive at a subjective definition of entropy in a thermodynamic analysis.
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We here argue that, opposite to the argument given above, the definition
given in Eq. 6 is a subjective one. The reason for this lies in the fact that dQrev

is not an objective quantity. To see this we have to go back to the definition
of reversible heat, which goes via the definition of reversible work. Work is
usually seen as the energy that is exchanged with a system in a controlled way
in thermodynamic processes, meaning that energy that is called work could
also be used to drive other processes like lifting a weight, for instance. What
is seen as controlled energy sources largely depends on the observer, as well
as the reversibility of such processes. For instance, taking the Gibbs paradox
as an example, whether there is a thermodynamic process that separates two
types of particles in a gas depends on whether the experimenter knows about
the two types or not. Two observers with different knowledge will therefore call
the process of mixing two gases to one gas reversible or not depending on their
knowledge. But if it can subjective whether a process is reversible or not then
also the quantity dQrev is a subjective one.

Having argued that dQrev is not the same for all observers it directly follows
that δS defined through Eq. 6 is subjective. It depends on what operations /
processes the observer considers reversible.

3 Information theoretic views on thermalization

We now come to the last part of the excursion to thermodynamics and informa-
tion theoretic views on it. Also, this is the only section in which purely quantum
phenomena show up while the previous analysis classical.

The main question with which we will be concerned in this section is: how
can one justify that an initially pure state of a system S will turn to a mixed
state after some time?

Thinking of quantum mechanics a closed system evolves unitarily. Hence an
initially pure state will stay pure for all times. More generally, (von Neumann)
entropy is constant under unitary evolutions and so in this case no mixedness
can be introduced. If S can interact with an environment, say E, it is no longer
closed and its entropy can increase during a joint evolution with E.

The same argument holds for a classical system that evolves according to the
laws of classical mechanics, which are deterministic. Clearly for a closed system
S entropy will stay constant, but if the system interacts with an environment
E, an entropy increase of S during the evolution is possible.

In the following we will investigate how exactly this can happen, and how
typical it is.

3.1 Analogy: a die

The reason why we say that systems thermalize after some time is the same as
the reason why we say that the outcome of a die is random. see Fig. 3. Also for
a classical die D starting in one of six possible states d ∈ {1, . . . , 6}, say d = 4,
the initial entropy is zero, H(D) = 0. After throwing it, we usually say that
each outcome is equally likely, hence H(D) = log 6 after that. Clearly D is not
a closed system in this consideration, so entropy can increase. Nevertheless the
question remains how.
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H(D) = 0 H(D) = log 6

throw it
?

Figure 3: Even if we know the initial state of a die D, after throwing it we
usually say that its outcome is random. The (Shannon) entropy of D is initially
H(D) = 0, but finally it is maximal, H(D) = log 6, as the actual state d ∈
{1, . . . , 6} is unknown.

To understand this let us model the environment too. For simplicity we
assume that the environment consists only of an agent throwing the die and
looking at the outcome. Agent and die together form a closed system. The
agent has many different ways to throw D and initially it is random which
one is chosen. Therefore there is some uncertainty about A initially, which we
quantify as H(A) = c for some c ≥ 0. For the total system in the initial state we
have H(AD) = H(A) +H(D) = c+ 0 = c. Since AD together are assumed to
be closed the entropy does not change throughout the evolution, so H(AD) = c
will stay constant. However, H(D) may change.

This becomes possible because initially A and D are uncorrelated, I(A :
D) = 0, but finally I(A : D) = log 6 is possible.6 To see this, consider the
simplified case when there are exactly six ways of throwing the die, {a1, . . . , a6},
and where ai leads to outcome i for D. Assume that initially, all 6 ways of
throwing the die are equally likely, which means that the initial state of AD can
be described as

ρin
AD =

6∑
i=1

1

6
|ai〉〈ai|A ⊗ |4〉〈4|D ,

and H(A) = log 6. After throwing D the final state may be7

ρout
AD =

6∑
i=1

1

6
|ai〉〈ai|A ⊗ |i〉〈i|D .

The total entropy of AD will not have changed, but the reduced state on D
after the joint evolution is ρout

D = 1
6

∑
i |i〉〈i|D, which is fully mixed and thus

H(D) = log 6. Also it is easy to check that in this case for the final state
I(A : D) = log 6.

To sum up, the reason why the outcome of the die is random is that ran-
domness that was already in the agent throwing the die. This randomness

6If c was too small, c < log 6, I(A : D) = log 6 is not achievable. Above we assumed that
there are many ways in which the agent can throw the die and it is unknown to us which one
is going to be chosen. Hence it is fair to assume that c ≥ log 6 which allows the final mutual
information to be I(A : D) = log 6 for some evolutions.

7Check for yourself that closed evolution (i.e. unitary evolution in this notation) can lead
to this state change.



3. INFORMATION THEORETIC VIEWS ON THERMALIZATION 11
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? S

E

? S

?

H(S) = 0, H(E) = c H(S) = c′, H(E) = c

joint evolution

of S ⊗ E (closed)

Figure 4: Consider two systems, S and E, where E is much larger than S. The
total system is S ⊗ E. They are assumed to be uncorrelated initially, which
implies H(SE) = H(S) + H(E). Furthermore, S may be in a pure state with
no entropy, whereas there may be some entropy c in E initially. Nevertheless,
just like in the example of the die above, after joint evolution the entropy of
E can be the same as the initial entropy while the entropy of S increased to
H(S) = c′ due to correlations between S and E.

is extended to the correlations between A and D during the evolution, which
makes the final state of D random, too. It is not the case that entropy flow
from A to D. Also, it is important to note that no entropy ‘flew’ from A to D,
as also in the final state H(A) = log 6.

3.2 Qualitative analysis – classical and quantum

Let us now apply the above to understand why subsystems of larger systems
thermalize. Thermalization is always accompanied with an entropy increase and
in a first step we focus on this characteristic.

Let S be the system of interest and E be a much larger environment, see
Fig. 4. Notice that S is not a subsystem of E but rather S and E together
form a composite system S ⊗ E. We have seen above in the example with the
die that initial entropy in E can lead to an entropy increase in S during joint
evolution, even though the entropy of E is not diminished. This shows that it
would be wrong to think of it as entropy flowing from E to S. The effect relies
on correlations built up during the process which allow S to ‘inherit uncertainty’
from E without making E more pure.

An obvious question is now whether such an effect could also occur if there
was no initial randomness in E, i.e. H(E) = 0 initially. However, this view
can only be consistent with our everyday observations if subsystems undergoing
joint evolution with other systems can experience entropy increases.

Classically. In a classical world this is impossible, as we will show here. If
S and E share no correlations initially and both contain no entropy, H(S) =
H(E) = 0, then we have H(SE) = H(S) + H(E) = 0 initially, and also in the
final state because S ⊗E undergoes closed evolution. But then also in the final
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state

0 = H(SE) = H(S) +H(E|S)︸ ︷︷ ︸
≥0

, (7)

where H(E|S) ≥ 0 because both E and S are classical systems. Since also H(S)
is non-negative, it follows that H(S) = 0 for all times. Thus, if the universe
was classical and initially in a pure state, then subsystems cannot increase their
entropy locally, which prohibits thermalization.8

Quantum. In a quantum world the phenomenon of having H(S) > 0 even
though the universe is in a pure state is, surprisingly, possible. Even if there are
no initial correlations between S and E, and both systems are in a pure state
initially, joint evolution can lead to a local entropy increase on S. The reason
for this is that in a quantum world H(E|S) can become negative, giving space
for H(S) to be positive in Eq. 7.

This is a purely quantum feature because only entangled states on S ⊗ E
can have negative conditional entropy.9 We conclude that in a quantum world,
even if c = 0 (the initial entropy in the universe), thermalization processes can
occur.

3.3 Thermalization through entanglement

We now present a result that quantifies how typical it is to observe thermaliza-
tion in quantum systems. This result is stated in very general terms and we will
comment on its implications on thermalization processes after having stated it.

The setting is again the same: We have two systems, the systems of interest
S, and the rest E is called environment. The Hilbert spaces of those systems are
denoted by HS and HE , respectively. Let HR ⊂ HS ⊗HE be a subspace of the
total Hilbert space, e.g. defined via energy constraints on the possible states.
Define the fully mixed state on R to be ER = 1R

dR
and the canonical states on S

and E as ΩS = trE [ER] and ΩE = trS [ER], respectively.
Informally, the following theorem states that for a randomly chosen pure

state on HR the marginal of this state on S is very close to the canonical state
on S, provided the dimension of S is much smaller than the one of E, dS � dE .

Theorem. [Popescu, Short, Winter (2006)]
Let HS⊗HE be a bipartite Hilbert space of dimension dS ·dE and HR ⊂ HS⊗HE
a subspace of dimension dR. Define ER = 1R

dR
and the corresponding marginals

ΩS = trE [ER] and ΩE = trS [ER]. Then for a randomly chosen pure state on
HR, |φ〉 ∈ HR, and arbitrary ε > 0, the trace distance between the actual reduced
state on S, ρS = trE [|φ〉〈φ|], and the canonical state ΩS is given probabilistically
by

P [ ‖ρS − ΩS‖1 ≥ η ] ≤ η′ , (8)

8Equivalently this can be seen as a consequence of the fact that for a deterministic global
probability distribution any marginal is deterministic, too.

9Notice that there is no 1-1 correspondence between entangled states and negative con-
ditional entropy. However, if a conditional entropy is negative, then the corresponding state
must be entangled.



3. INFORMATION THEORETIC VIEWS ON THERMALIZATION 13

where

η = ε+

√
dS
deff
E

, η′ = 2e−CdRε
2

, deff
E =

1

tr[Ω2
E ]
≥ dR
dS

, C =
1

18π3
. (9)

In applications the environment will be much larger than the system, dE � dS ,
and dR � 1 s.t. both η and η′ will be small and the actual state ρS will be close
to the canonical state ΩS with high probability.

This theorem can be interpreted as a statement about typical states.10

Namely, for typical states |φ〉 ∈ HR, even if they are pure on S⊗E, the reduced
state of S is mixed. Furthermore, this reduced state is mixed in a very specific
way. It will be such that it is very close to the canonical state in trace distance.

What is the canonical state? Let us consider two examples. First, let R be
the whole system S ⊗ E, i.e. no restrictions. In this case the canonical states
are fully mixed. Hence the theorem tells us that typical pure states on S ⊗ E
are fully mixed on S with high probability.

The second example concerns thermodynamics. It can be shown (see exer-
cises) that if R is restricted through energy constraints (e.g. ‘the total energy of
S and E must be equal to Ē’) then ΩS ∝ e−βHS , where HS is the Hamiltonian
on S and β is the inverse temperature of the environment E. Then the theorem
tells us that typical pure states on S ⊗ E with a energy Ē are very close to
thermal on S with high probability.

Comment on typical states. The previous theorem made statements about
typical states (also called random). How are typical / random states defined?
A measure on a set is usually called uniform if it is invariant under some sort of
translation. In the case of a complex Hilbert space H ‘translations’ are unitary
operations on the vectors. Hence, a measure on H is called uniform if it does
not change when first applying a unitary operation.

Such a measure can be derived from the Haar measure, dµ, over the unitaries
on H, U(H), simply by starting from an arbitrary reference state |0〉S |0〉E and
then applying a Haar-random unitary U ∈ U(H) to this state. The probability
distribution is then invariant under the application of a unitary V ∈ U(H)
because dµ(V U) = dµ(UV ) = dµ(U) for all V ∈ U(H).

Comment on typical evolution. When we talk about thermalization we
usually speak of typical evolution that leads to thermalization, rather than typ-
ical states. In fact, the previous comment can be seen as defining typical states
in terms of typical evolution. Thinking of typical evolution of a closed system
as a Haar-random unitary, we ultimately find that typical evolution leads to
typical states

10See comments below for a definition of what is referred to as typical states.


