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Exercise 1. Thermalization through entanglement
In the lecture we have seen a theorem stating the following:

Let Hs @ H g be a bipartite Hilbert space of dimension dg-dg and Hr C Hgs® Hp a subspace (reflecting
some constraint on the possible states) of dimension dg. Define £g = i—g’ to be the fully mixed state on
the subspace H g and the corresponding marginals Qg = trg[Er] and Qf = trg[€g]. Then for a randomly
chosen pure state on Hg, |¢) € Hg, and arbitrary € > 0, the distance between the actual reduced state
on S, ps = trg[|¢) (4[], and the canonical state Qg is given probabilistically by

Plllps = Qslli >0l <7, (1)

where
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In applications the environment will be much larger than the system, dg > dg, and dg > 1 s.t. both n
and i’ will be small. Thus the actual state ps will be close to the so called canonical state Qg with high
probability.

a) Find a lower bound on dS in terms of Huin(E)q,. and argue why we can set dg = 2Hmax(S)ag
E E
Bound n in terms of € and the two entropies.

In the remaining part of this exercise we will explore the above theorem by considering the example of an
ensemble of n spin-% systems in an external magnetic field B. The field points to the +z direction and
the first k spins form the system S while the remaining n—k spins are the environment. The Hamiltonian
18

H:_Z§0§)7 (3)

where US) =11® - ®1L1®0, @111 ®---®1,. We now consider the restriction to the subspace
Hr C Hs ® Hp in which np spins are in the excited state |1) (opposite to the field) and the remaining
n(l —p) spins are in the ground state |0). Our goal is to show that Qg o< exp ( — inST), where Hg is the
Hamiltonian (3) restricted to the first k spins and T is the temperature of the environment according to

Boltzmann (see definition below).

(b) Show that for n > k? the canonical state Qg is approzimately given by
®k
Qs ~ (p[1)(1] + (1 = p)[0){0]) " (4)

(¢) Boltzmann’s formula relates the entropy of the environment at energy E, Sg(FE), to the number of
states available at this energy, Ng(E), by Sg(E) = kg In Ng(E). Having an expression for Sg(E)

then allows us to find the thermodynamic temperature by means of % = deE]éE) B=(B)" Using
Stirling’s approrimation, find that
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(d) Use (b) and (c) to show that the canonical state on S approzimately fulfils
Hg
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Solution.

(a)

Let {)\;}; be the eigenvalues of Q. The term tr[Q%] = >, A? can be seen as the ‘expected’
eigenvalue of Qg, which is certainly upper bounded by the maximal eigenvalue, max; \;.
Therefore we have

dift = tr[Qp) 7! = 2710 XA > g logmaxiAi — oHmin(E) (S-1)

as Humin(E)q, = — logmax; \;.
On the other hand, we can always restrict S to be the subspace on which {2g has support

because, according to the result (1), this is the space of interest (to very good approxima-
tion). Therefore, we can set dg = |supp(Qgs)| = 2max(5) as H,..(S)qs = log [supp(Qs)]-

In total we find
d .
n=e+, /de—f{ < & 4 23 (Huex(S)~Huin(B)) (S.2)
E

Importantly, this bound only depends on the canonical states, which arise as a consequence
of the (physical) restriction defining Hp.

Before going into the calculation of 2g we first use Stirling’s approximation, Inn! = nlnn—
n + O(Inn), denoted by ), to show that for large n and k < n: (n — k)! ~ n!/n*. We
have

In(n — k) (n— k) In(n— k) — (n— k) = (n— K)lnn+ (n— K)o (1— &) —n+ &
(;J)lnn!—klnn+(n—k)ln(1—%)+k%lnn!—klnn+(n—k)(—%)+k
zlnn!—klnn—i—%%lnn!—klnn,

(S.3)

where we used % < 1 and In(1 —z) ~ z for small = together with % < 1. Exponentiating
gives the desired approximation.

In the following we use the notation [3) = [s1)|s2)---|s;) for & € {0,1}* and define
|5] := )", s;. We can write the canonical state on S as

QSZ;%:(TZ_IC)@@], (5.4)

np — |5

where d}_%l = (&)71 stands for normalization and the binomial coefficients arise due to
the n — k spins of the environment which can have np — |3] excitations if there are |5]
excitations in S. For fixed p and sufficiently large n (we assume it to be sufficiently large)

the approximation (S.3) also applies to

(np — [8)! = (np)!/(np)1¥, and  (n(1—p) — (k — |3])! ~ (n(1 — p))!/(n(1 — p))F~1*
(S.5)



due to |5]2 < k%2 < n. We therefore find
n\ " n!/nk
s <np> Z o) mp)F (L — ) (1 — )y

n\ * n! 5 5
“ (1) 2 Tapitn —mpyi? (1= P) 56
=> pFl(1—p) 55

— (p[1)(1] + (1 = p)|0)(0])**

(c) Let e be the number of excitations in the environment of n — k spins. The average value
for e obviously is (n — k)p. The logarithm of the number of states in the environment with
e excitations reads

In Ng(e) = In <

n;k) ~(mn—k)ln(n—k)—elne—(n—k—e)ln(n—k—e), (S.7)

where we again used Stirling’s approximation. We now use Boltzmann’s formula for the

entropy, Sg(e) = kpln Ng(e), to obtain the inverse temperature % = dSE ‘E (B)’ where
E=eB—(n—k)B/2:

1 dSg(E) _ 1dSg(e) k—Bl <n—k—e>
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(d) From (b) and (c) we get

25~ (1- ﬁj(ﬁp) (61 = Zexp<—|§1m< 7)1

Zexp( ”B>y§><§1mp (—,ij,,)

Together with the above theorem we learn that in this example on n spins (n sufficiently
large), the state of the first k spins is very close to thermal for a typical pure state on the
total system with np excitations.

Exercise 2. One-time Pad

Consider three random variables: a message M, a secret key K and a ciphertext C. We want to encode

M as a ciphertext C using K with perfect secrecy, so that no one can guess the message from the cipher:
I(C:M)=0.

After the transmission, we want to be able to decode the ciphertext: someone who knows the key and the

cipher should be able to obtain the message perfectly, i.e. H(M|CK) = 0.

(a) Show that this is only possible if the key contains at least as much randomness as the message,
namely H(K) > H(M).

(b) Give an optimal algorithm for encoding and decoding.



Solution.

(a)

First note that

I(C:M)—I(C: M|K)=I(M:K)—I(M: K|C)

=I(K:C)—-I(K:C|M), (5.10)

and that mutual information is non-negative. We introduce z = I(C : M|K), y = I(M :
K|C) and z = I(K : C|M) and, using I(C : M) = 0, we get

r—I(C;M)=x=y—I(M:K)=z-I(K:C). (S.11)
Using the two conditions, we write

(M|ICK)+I(C:M)+I(K: M|C)=y, and

(S.12)
(K|MC)+ I(M: K)+ I(M:C|K) >y —x + 2.

X

=5
I
Sugse

However, since y > x and z > z (from (S.11)), we get H(K) > H(M).

Given a message M of m bits, an optimal encoding algorithm could first compress the
message to H(M) bits and then use a secret and completely random binary key of length
H (M) to encode it. Given a message bit M; and a secret code bit K, the ciphertext bit
would be generated C; = M; ® K; using XOR. The decoding would recreate the message
bit M; = C; & K; and then decompress it.

This way of encoding is called one-time pad and by showing that H(K) > H(M) is
necessary we have in particular shown optimality of the one-time pad in terms of the
number of used key bits.



