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Exercise 1. Trace distance and fidelity: Fuchs-van de Graaf inequalities

Trace distance δ(ρ, σ) and fidelity F (ρ, σ) of two quantum states ρ, σ ∈ S(H) are closely related. In some
sense they can be considered equivalent measures of distance, as we will explore in this exercise. Before
we start, let us repeat the quite different definitions of the two objects, δ and F .

δ(ρ, σ) := tr |ρ− σ| ≡ tr

[√
(ρ− σ)†(ρ− σ)

]
= max
P proj.

tr [P (ρ− σ)] (alternative def.)

F (ρ, σ) := tr

[√√
ρσ
√
ρ

]
= max

|Ψ〉,|Φ〉 purif.
|〈Ψ|Φ〉| (Uhlmann)

(a) Show that in the case of pure states ρ = |ψ〉〈ψ|, σ = |φ〉〈φ| trace distance and fidelity fulfil

δ(ρ, σ) =
√

1− F (ρ, σ)2 . (1)

(b) Use that trace distance can only decrease under quantum operations (see last sheet) to show that
for general ρ, σ ∈ S(H)

δ(ρ, σ) ≤
√

1− F (ρ, σ)2 . (2)

There is yet another very useful characterization of the fidelity as an optimization over all possible POVM
measurements. For two (classical) probability distributions {pm}m and {qm}m define the classical fidelity
to be

F ({pm}, {qm}) :=
∑
m

√
pmqm .

The quantum fidelity can then be written as

F (ρ, σ) = min
{Em} POVM

F ({pm}, {qm}), (3)

where pm := tr[ρEm] and qm := tr[σ Em]. Likewise, using the same notation, the quantum trace distance
can be written as

δ(ρ, σ) = max
{Em} POVM

δ({pm}, {qm}), (4)

where δ({pm}, {qm}) is the classical trace distance of the respective probability distributions.

(c) Use this way of writing F (ρ, σ) and δ(ρ, σ) to prove that for any two states ρ, σ ∈ S(H)

1− F (ρ, σ) ≤ δ(ρ, σ) . (5)

In total this shows ‘equivalence’ of δ and F in terms of the inequalities

1− F (ρ, σ) ≤ δ(ρ, σ) ≤
√

1− F (ρ, σ)2 .
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Solution.

(a) To prove this fact we only need to work in the 2-dimensional subspace of H spanned by
|ψ〉 and |φ〉. As a basis of this space we take {|ψ〉, |ψ⊥〉}, where |ψ⊥〉 is the normalized
vector orthogonal to |ψ〉 that allows us to write

|φ〉 = cos θ|ψ〉+ sin θ|ψ⊥〉 (S.1)

for some θ ∈ R. We find that

F (ρ, σ) = |〈ψ|φ〉| = | cos θ| ,

δ(ρ, σ) =
1

2
tr

∣∣∣∣( 1− cos2 θ − cos θ sin θ
− cos θ sin θ − sin2 θ

)∣∣∣∣ = | sin θ| .
(S.2)

Thus we have
√

1− F (ρ, σ)2 = δ(ρ, σ) in this case.

(b) Let now ρ, σ ∈ S(H) be two arbitrary quantum states and let |Ψ〉 and |Φ〉 be purifications
s.t. F (ρ, σ) = |〈Ψ|Φ〉| = F (|Ψ〉, |Φ〉). The partial trace over the purifying system is a
quantum operation (cptp map). Thus, together with (a),√

1− F (ρ, σ)2 =
√

1− F (|Ψ〉, |Φ〉)2 = δ(|Ψ〉, |Φ〉) ≥ δ(ρ, σ) . (S.3)

(c) We make use of the definition of F as a minimization over POVMs. Let {Em}m be a
POVM with pm := tr[ρEm] and qm := tr[σ Em] that minimizes F ({pm}, {qm}). Hence,

F (ρ, σ) =
∑
m

√
pmqm. (S.4)

Consider ∑
m

(
√
pm −

√
qm)2 =

∑
m

pm +
∑
m

qm − 2F (ρ, σ) = 2(1− F (ρ, σ)) . (S.5)

On the other hand we have |√pm −
√
qm| ≤ |

√
pm +

√
qm| and thus∑

m

(
√
pm −

√
qm)2 ≤

∑
m

|√pm −
√
qm| |
√
pm +

√
qm| =

∑
m

|pm − qm|

= 2 δ({pm}, {qm}) ≤ 2 δ(ρ, σ) ,

(S.6)

where the last inequality is due to (4). In total this reads

1− F (ρ, σ) ≤ δ(ρ, σ) . (S.7)

Exercise 2. Properties of von Neumann entropy

The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as H(A)ρ := −tr
(
ρ log ρ

)
. Given

a composite system HA⊗HB ⊗HC we write H(AB)ρ to denote the von Neumann entropy of the reduced
state of a subsystem, ρAB = trC(ρABC). When the state ρ is obvious from the context we can drop the
index.
The conditional von Neumann entropy may be defined as H(A|B)ρ := H(AB)ρ −H(B)ρ. In the Alice-
and-Bob picture this quantifies the uncertainty that Bob, who holds part of a quantum state, ρB, still has
about Alice’s state.
The strong sub-additivity property of the von Neumann entropy shows up a lot. It applies to a tripartite
composite system HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (6)
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(a) Prove the following general properties of the von Neumann entropy.

(i) If ρAB is pure, then H(A)ρ = H(B)ρ.

(ii) If ρABC is pure, then H(A|C)ρ = −H(A|B)ρ.

(iii) If two systems are independent, ρAB = ρA ⊗ ρB, then H(AB)ρ = H(A)ρA +H(B)ρB .

(b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑
z pz|z〉〈z|Z ⊗ ρzA for some

orthogonal basis {|z〉Z}z of HZ and a set of states {ρzA}z ⊂ S(HA). Show that:

(i) The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (7)

where H(A|Z = z) = H(A)ρzA .

(ii) The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (8)

(iii) The entropy of a classical probability distribution {pz}z cannot be negative, even if one has
access to extra quantum information, A,

H(Z|A)ρ ≥ 0. (9)

Remark: Eq (9) holds in general only for classical Z. Bell states are immediate counterex-
amples in the fully quantum case.

Solution.

(a) (i) This becomes clear when you apply the Schmidt decomposition to the pure state
ρAB: the reduced states of the two subsystems A and B have the same eigenvalues.
If {λi}i are the eigenvalues of ρA then the von Neumann entropy of A can be written
as

H(A)ρ = −
∑
i

λi log λi . (S.8)

Since they have the same eigenvalues, the reduced states have the same entropy.

(ii) Using (a) (i) as well as the definition of conditional entropy we find

H(A|C)ρ = H(AC)ρ −H(C)ρ = H(B)ρ −H(AB)ρ = −H(A|B)ρ . (S.9)

We used twice that ρABC is pure.

(iii) We denote by {λi}i and {γj}j the eigenvalues of ρA and ρB, respectively. Hence
{λiγj}i,j are the eigenvalues of ρAB and we can write:

H(AB)ρ = −
∑
i,j

λiγj log(λiγj)

= −
(∑

i

λi

)
︸ ︷︷ ︸

=1

·
(∑

j

γj log γj

)
−
(∑

j

γj

)
︸ ︷︷ ︸

=1

·
(∑

i

λi log λi

)

= H(A)ρA +H(B)ρB .

(S.10)
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(b) (i) First, note that the eigenvalues of
∑

z pz|z〉〈z| ⊗ ρzA are given by {pzλzk}z,k, where
{λzk}k are the eigenvalues of ρzA ≡ ρA|Z=z. We may now write:

H(AZ)ρ = −
∑
z,k

pzλ
z
k log(pzλ

z
k)

= −
∑
z

pz

(∑
k

λzk

)
︸ ︷︷ ︸

=1

log pz −
∑
z

pz

(∑
k

λzk log λzk

)

= H(Z) +
∑
z

pzH(A|Z = z),

and

H(A|Z)ρ = H(AZ)ρ −H(Z)ρ =
∑
z

pzH(A|Z = z), (S.11)

(ii) First note that from strong sub-additivity follows sub-additivity, H(AC) ≤ H(A) +
H(C), if HB is empty. Applying this to a system classical in HZ , we get

H(AZ) = H(Z) +
∑
z

pz H(A|Z = z) ≤ H(A) +H(Z) (S.12)

from which the inequality follows immediately.

(iii) First note that from strong sub-additivity follows sub-additivity, H(AC) ≤ H(A) +
H(C), if HB is empty. Applying this to a system classical in HZ , we get

H(AZ) = H(Z) +
∑
z

pz H(A|Z = z) ≤ H(A) +H(Z) , (S.13)

from which the inequality follows immediately.

(iv) Let us introduce a copy of the classical subsystem Z, Y , as follows:

ρAZY =
∑
z

pz|z〉〈z|Z ⊗ |z〉〈z|Y ⊗ ρzA. (S.14)

Note that, for this state, H(AZ) = H(AY ) = H(AZY ).

We may now appply the strong sub-additivity,

H(AZY ) +H(A) ≤ H(AZ) + H(AY )︸ ︷︷ ︸
=H(AZY )

⇔ 0 ≤ H(AZ)−H(A)

⇔ 0 ≤ H(Z|A) .

(S.15)

Exercise 3. Upper bound on von Neumann entropy

(a) Given a state ρ ∈ S(HA), show that

H(A)ρ ≤ log |HA| . (10)

Hints: Consider the state ρ̄ =
∫
UρU†dU , where the integral is over all unitaries U ∈ U(HA) and

dU is the Haar measure. Find ρ̄ and use concavity, (8), to show (10). The Haar measure satisfies
d(UV ) = d(V U) = dU , where V ∈ U(HA) is any fixed unitary.

(b) For ρAB ∈ S(HA ⊗HB), show that the conditional entropy satisfies

− log |HA| ≤ H(A|B)ρ ≤ log |HA| . (11)
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Solution.

(a) We use the properties of the Haar measure to verify that ρ̄ commutes with all unitaries V
on H:

V ρ̄V † =

∫
(V U)ρ(V U)† dU =

∫
Ũρ Ũ † d(V †Ũ) =

∫
Ũρ Ũ † dŨ = ρ̄. (S.16)

The only density operator on H that has this property is the completely mixed state:
suppose that ρ̄ had distinct eigenvalues {λi}, and corresponding eigenvectors {|i〉}. Take
V to be a unitary transformation that permutes the eigenvectors, for instance V = |1〉〈2|+
|2〉〈1|. Then we would have that V ρ̄V †|1〉 = λ2|1〉, while ρ̄|1〉 = λ1|1〉, so ρ 6= V ρV †. Since
all the eigenvalues of ρ̄ must be the same, and must be positive and sum up to one, we
have that ρ̄ = 1/|H|
The concavity property of the von Neumann entropy (8) naturally extends to integrals
and we get

log |H| = H

(
1

|H|

)
= H(ρ̄) ≥

∫
H(UρU †) dU

(∗)
=

∫
H(ρ) dU = H(ρ)

∫
dU = H(ρ),

(S.17)

where (∗) stands because the entropy is independent of the basis.

(b) We first use (a) to show H(A|B)ρ ≤ log |HA|: due to (strong) sub-additivity we have

H(A|B)ρ ≤ H(A)ρ ≤ log |HA| . (S.18)

For the other inequality we make use of exercise 2 (a) (ii) and the above. Let ρABC be a
purification of ρAB. Then

H(A|B)ρ = −H(A|C)ρ ≥ −H(A)ρ ≤ − log |HA| . (S.19)
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