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Exercise 1. Trace distance

The trace distance (or Lq-distance) between two probability distributions Px and Qx over a discrete
alphabet X is defined as

§(Px,Qx) = Z\PX Qx(z)|. (1)

zGX

The trace distance may also be written as
0(Px, Qx) = max|Px[S] - Qx[S]], (2)

where we mazximise over all events S C X and the probability of an event S is given by Px[S] =

Dwes Px(2).

(a) Show that §(-,-) is a good measure of distance by proving that 0 < §(Px,Qx) < 1 and the triangle
inequality 0(Px, Rx) < §(Px,Qx)+0(Qx, Rx) for arbitrary probability distributions Px, Qx and
Rx.

(b) Show that definitions (2) and (1) are equivalent.

(c) Let us now find an operational meaning for the trace distance. Suppose that Px and Qx represent
the probability distributions of the outcomes of two dice that look identical. You are allowed to
throw one of them only once and then have to guess which die that was. What is your best strateqy?
What is the probability that you guess correctly and how can you relate that to the trace distance

(Px,Qx)?

Solution.

(a) The lower bound follows from the fact that each element of the sum (1) is non-negative.
We get the upper bound from

(Px,Qx) = 3 3 IPx(a) ~ Qx(@) < 5 3 Px(0) +Qx(m) = 1. (81)
xeX TEX
The triangle inequality can be written as
1 1
3 > |Px(x) - Rx(x)] < 5 > IPx(x) - Qx ()| + 1@x(z) — Rx(z)].  (S:2)
zeX TeEX

If the inequality is true for every x € X, it is also true for the above sum. It is thus
sufficient to prove that |Px(z) — Rx(z)| < |Px(z) — Qx(x)| + |Qx(z) — Rx(z)| for all
x € X. We know that |a+ 8| < |a| + || for a, 8 € R. Hence the inequality follows with
a = Px(z) — Qx(x) and 8 = Qx(x) — Rx(x).

(b) To maximise |Px[S] — Qx[S]| = [>,cs Px(z) — @x(z)| in (2), we choose
S={zreX : Px(zr)>Qx(x)}. (S.3)

Let S be its complement, such that SUS = X, S NS = (). We may now write

0= Px(x) - Qx(x) =Y _|Px(z) - Qx(x)| = > [Px(x) — Qx(x)|. (S.4)

zeX z€eS zesS



The terms Px (z) — Qx (x) are positive in the first sum on the right-hand side and negative
in the second sum. We can thus take the modulus after the sum in the first term and write

Z Px(r) — Qx(x)

€S

- Z |Px(z) — Qx ()] = Z |Px(z) — Qx ()]

TES zeS (85)

= 23 IPx ()~ Qx(a).

zeX

The last equality is obtained because Y v = > s+ > .c5 Altogether this proves that
the two definitions (1) and (2) are equivalent.

(¢) Your best strategy is to say it was the die more likely to outcome the result you obtained,
i.e. if you define the event S = {x € X : Px(z) > Qx(x)} (the results that are more likely
with die P), then you better say that you threw die P if you get an outcome = € S and Q
ifxes.

The probability that your guess is right is

(1+0(Px,Qx)), (S.6)

N | =

Py = 5Px(8) + 5Qx(8) = 5 (Px(S) +1- Qx(S)) =

by definition (2) of trace distance.

Exercise 2. Weak law of large numbers

Let A be a positive random variable with expectation value (A) = a Pa(a). Let P[A > €| denote the
probability of an event {A > e} for some e > 0.

(a) Prove Markov’s inequality

P(X—p?®2¢ <—, (4)
€
where o denotes the standard deviation of X.
(c) Use Chebyshev’s inequality to prove the weak law of large numbers for i.i.d. X;:
1O ’
i - - >z = — (X,
lim P (nle u) _s] 0 foranye>0,u=(X;). (5)

Solution.

(a) This is done by multiplying the summands by a fraction a/e which is large than or equal
to 1 for a > «:

PlAz e =3 Pafo) < 30 P < o@D, 8.7



(b) Note that we can substitute A = (X — u)? into Markov’s inequality to get Chebyshev’s
inequality

: (S.8)

where o is the standard deviation of X.

(c) If we now substitute X = 13" X; the expectation value remains the same, whereas the
variance scales with % because the X; are independent and all have the same distribution
(ii.d.). We get

2
P lZX-_ > <7 (S.9)
n < T '

where o; is the standard deviation of X;. The weak law of large numbers now follows with
n — oo for any fixed € > 0.

Exercise 3. Conditional probabilities I: Mrs. Smith’s children

(a) You are strolling in a park when a woman, Mrs. Smith, is approaching you with a covered twin
buggy. She tells you that she has fraternal twins and in the course of the conversation you learn
that one of the twins is a girl named Jane. What is the probability that the other twin is a girl,
too?

(b) We now change the situation slightly. After having a short conversation with Mrs. Smith you know
that she has fraternal twins. You ask her ‘are they both boys?’ and she answers ‘no’. What is the
probability that she has two girls?

(c) Another version of this story goes as follows: during the conversation with Mrs. Smith you ask
‘could you please tell me the sex of one of your twins?’ and she answers ‘one of them is a girl’.
What is now the probability that the other is a girl?

(d) Ezplain the difference between the three situations in words and in terms of conditional probabilities.
What are the hidden assumptions?

Solution.

(a) For fraternal twins the probabilities are
1 1
P(two boys) = P(two girls) = iP(one boy, one girl) = 1 (S.10)
and the sexes of the twins are independent. Considering the table

Jane ‘ other child ‘ possible?

boy boy no
boy girl no
girl boy yes
girl girl yes

and taking Mrs. Smith’s answer into account we see that only 2 of initially 4 equally likely
events are still possible. This gives probability % that the other twin is also a girl.



(b)

Consider the following table:

firstborn | secondborn ‘ Mrs. Smith’s answer | sex of other child

boy boy ‘yes’ irrelevant
boy girl ‘no’ boy
girl boy ‘no’ boy
girl girl ‘no’ girl

The three relevant cases (the cases for which Mrs. Smith answers with ‘no’) are now equally
likely, hence occur with probability % each. Thus she has two girls only with probability
%. Note that the distinction into firstborn and secondborn is arbitrary and artificial — we
only need something to distinguish the twins.

We go over all possibilities the mother has to mention the sex of one of her twins:

firstborn | secondborn | Mrs. Smith mentions | you learn | other child
boy boy firstborn > 1 boy boy
boy boy secondborn > 1 boy boy
boy girl firstborn > 1 boy girl
boy girl secondborn > 1 girl boy
girl boy firstborn > 1 girl boy
girl boy secondborn > 1 boy girl
girl girl firstborn > 1 girl girl
girl girl secondborn > 1 girl girl

Assuming that Mrs. Smith mentions the sex of each child with equal probability all 8 cases
are equally probable. However, only 4 of them are possible in our case (the ones in which
you learn ‘> 1 girl’). In half of these cases the other child is a girl, hence this happens
with probability 3.

In (a) you are given the name of one child to distinguish it from the other. A priori there
are 4 equally likely events, but after excluding the 2 events in which Jane is a boy you are
left with 2 only. In terms of conditional probabilities this is

. . . P(Jane is a girl | two girls) P(two girls 1-1 1
P(two girls | Jane is a girl) = ( P(Ja’ne - giri) ( ) _ 14 =5

(S.11)

The situation in (b) is pretty clear. Before asking you have 4 possibilities with equal
probability, % each. After getting the answer that not both are boys one is excluded and
you are left with 3 equally likely possibilities. In terms of conditional probabilities we can
again use Bayes’ law to obtain

P(not two boys | two girls) P(two girls)  1-3 1

P(two girls | not two boys) = (not two boys | two girls) P(two gils) =—%="C.
P(not two boys) g 3

S

Hence the probability for Mrs. Smith to have two girls is %



The situation in (c) is again a bit different. Here we went over all possibilities the mother
has to mention the sex of one of her twins. To do so we again artificially distinguished the
children as firstborn and secondborn. Doing the same maths as above we obtain

P(two girls | you learn > 1 girl)
P(you learn > 1 girl | two girls) P(two girls) 1- 2 1 (S.13)

P(you learn > 1 girl) % 2

Note that we implicitly assume that Mrs. Smith would have approached you also if she
had two boys, in this case telling you that one of the twins is a boy. In addition, it is
assumed that if she had a boy and a girl she would have told you that she has at least
one boy/girl with probability % each. These hidden assumptions are important when we
use the last table to deduce the conditional probabilities in (S.13). If they do not hold the
eight cases are not equally likely.

Exercise 4. Conditional probabilities II: how knowing more does not always help

Suppose you are visiting your grandfather in his hut in Scotland. You had offered him a radio for Christ-
mas three years ago, but he is not so fond of such modern technologies and has not used it since. You
decide to initiate a game to prove to him that technology is helpful: every eveming you alone listen to
the weather forecast on the radio and then both you and your grandfather try to guess if it will rain next
morning. Having lived there since birth, your grandfather knows that it rains on 80% of the days. You
had reached the same conclusion on previous summer holidays. You also know that the weather forecast
is right 80% of the time and is always correct when it predicts rain.

(a) What is the optimal strategy for your grandfather? And for you?

(b) Both of you keep a record of your guesses and the actual weather for statistical analysis. After

some months who will have guessed correctly more often?

(¢) Can you think of an argument to convince him that listening to the forecast is useful?

Solution. Let us start by sorting the notation:

Pgr

=0

Ps
Pg

Pr

PRR

- probability that it rains;

- probability that the radio predicts rain;

- probability that it is sunny (no rain);

- probability that the radio predicts sunshine;

I probability that it rains when radio predicts rain;

- probability that it rains and radio predicted rain.

Notice that PR| & 1s a conditioned probability while Ppp is a joint probability,

Pop=P

ri = Priali: (5.14)

(a) You were given the probabilities Pr = 80%, Pgp+ Pgg = 80%, PR|R = 100%.

The best thing your grandfather can do is to say it will rain every morning — this way he
will win 80% of the time. As for you, if you use (S.14) you will compute the probabilities
represented in Fig. 1.



Radio forecast Actual weather

P _ P gir=100%
R=60% ( R > Pr_gov
PRris=s09
Pgp—on
. < Po_
Ps_400, | S 5=20%

p S|$=50%

Figure 1: The radio forecast and the actual weather: marginal and conditional probabilities.

Note: this figure could be interpreted as a channel — check exercise sheet 2 for more details
on channels.

When the forecast is rain you should believe it. When the report predicts sun it fails with
50% chance, so any strategy in this case is equally good (or bad). You may for instance
say it will always rain or follow the forecast.

(b) “After some months” means “after so many days that you can apply the law of large
numbers”’. Both you and your grandfather will be correct on approximately 80% of the
days — this is easy to see since one of your optimal strategies is to copy your grandfather
and say it will always rain.

(c) In exercise sheet 2.



