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Exercise 1. Depolarizing channel

We are given two two-dimensional Hilbert spaces H 4 and Hp and a completely positive trace
preserving (CPTP) map &, : S(Ha) = S(Hg), 0 < p < 1, defined as

£(p) =g +(1-)p. (1)

(a) An operator-sum representation (also called the Kraus-operator representation) of a CPTP
map € : S(Ha) — S(Hp) is a decomposition {Ej}, of operators Ej, € Hom(Ha, Hp),
Dok EE." = 1, such that

E(p) = EwpEyl.
k

Find an operator-sum representation for &,.

Hint: Remember that p € S(H4) can be written in the Bloch sphere representation:

1
p=5(+7G), TER’, |<1, 7 G =rwop+ry0y+7:0, (2)

where 0, 0y and o, are Pauli matrices. It may be useful to show that
1
1= i(p + 02p0 + oypoy + Uzpo-z)-

b) What happens to the radius 7 when we apply £,7 How can this be interpreted?
pp ppLy ¢p p

(c) A probability distribution P4(0) = ¢, P4(1) = 1 — g can be encoded in a quantum state
on Ha as p=q|0)(0]4 + (1 —¢q)[1)(1]4. Calculate £(p) and the conditional probabilities
Pp|4 as well as Pp after measuring £(p) in the standard basis {|0)p,[1)5}

Exercise 2. A sufficient entanglement criterion

Given a bipartite quantum state pap we say it is separable if it can be written in the form

PABIZpkUXC)®Og€), (3)
%

where {px}x is a probability distribution and {Ugc)}k and {ch)}k are some states on A and B,
respectively. Bipartite states that are not separable are called entangled.

In general it is very difficult to determine if a state is entangled or not. In this exercise we will
construct a simple entanglement criterion that correctly identifies all entangled states in low
dimensions.

(a) Let £4 : End(H4) — End(#Ha) be a positive superoperator. Show that £4 ® Zp maps
separable states to positive operators.



(b) Let {|vi)a} be an orthonormal basis for system A and define the transpose 7 as
T: 8= silvi)(ol = ST =3 sijug)vil- (4)
ij ij
Show that the transpose 7T is a positive superoperator and that it is basis dependent.

(c) Define the Werner state on a two-qubit system AB to be
N Tap
W =x[p™) (¥ |AB+(1—1’)Ta (5)
where 0 <z <1and [ )ap = %(’O(DAB —|11) ap). What happens to the eigenvalues of

W if we apply the partial transpose on A to it, i.e., what are the eigenvalues of W74 :=
(Ta®Zp)(W)?

(d) Given a description of a bipartite quantum state, explain how the partial transpose could
be used to determine if a state is entangled.



