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Exercise 1. Distinguishing channels

The setting is the following: With equal probabilities you are given either the identity channel
I on some finite alphabet X or an arbitrary channel W on the same alphabet, without knowing
which. In terms of conditional probability distributions the channels are described by

I(z|2') =0 and W(z|2'), (1)

for x,2’ € X. You are allowed to use the given channel once, possibly with a stochastic (ran-
domized) input, and then asked which channel was used.

(a) The error probability of a channel W is defined as Peor(W) := maxgecy (1 — Wi(x]| :U))
Argue why this is a sensible definition.

(b) Using properties of the trace distance of probability distributions previously derived in
Exercise Sheet 1, Exercise 1(c), show that the probability of guessing the channel correctly
in the above scenario is

Pguess(I Vs. W) = é(l + Perror(W))- (2)

Exercise 2. Source coding

In the lecture we have seen a channel coding theorem with a more or less tricky derivation
involving interesting ideas which were needed to get to the final result. In this exercise we will
consider source coding, the challenge of which is to compress some input described by a RV X
to another RV Y. One can think of this as the task to find the optimal channel Py x such that
all information contained in X can be retrieved from Y, but the alphabet Y of Y should be
as small as possible. Instead of phrasing the problem in a technical way, we are here taking a
simpler and more conceptual approach.

Consider a k-bit string described by the RV X distributed Px. We would like to compress this
to a [l-bit string described by a RV Y distributed Py. The goal is to find the minimal [ such
that Y contains (almost) all information from X.

(a) Suppose you are not interested in many but just in a single use of the compressed source.
Furthermore you will not tolerate any errors. How small can [ be chosen in this case?

(b) If you allow for some small error £, what is the answer now?

(¢) Often one is interested in many (independent) uses of the source. Using asymptotic
equipartition results for max-entropies, show that for IV i.i.d. uses of the source the opti-
mum compression requires N H(X)p, bits in the limit N — oc.

This is called Shannon’s source coding theorem. Interestingly, using single-shot quantities and
results about asymptotic equipartition this result becomes almost trivial.



Exercise 3. Getting used to the Bloch representation

In this exercise we will see that any density operator of a qubit can be written as

p=5A+73), 3)

where & = (0,0y,0) is the vector of Pauli matrices and 7 = (ry,7y,7,) € R3,|7] < 1 is the
so-called Bloch vector that gives us the position of a point in a unit ball. The surface of that
ball is usually known as the Bloch sphere. Thereby we go through a few properties of density
matrices describing states of a qubit using the Bloch representation. This way of expressing
qubit states is very convenient and frequently used in quantum information theory.

Hint: The (anti-)commutation relations for Pauli matrices will be helpful.

(a) Using Eq. (3):

(i) Find and draw in the ball the Bloch vectors of a fully mixed state and the pure states
that form three bases, {| T>7 ’ \L>}7 {‘+>7 ‘_>} and {| ©>7‘ O>}

(ii) Find and diagonalise the states represented by Bloch vectors 7 = (3,0,0) and 7 =
1 1
( \/57 07 \/5)'

(b) Show that the operator p defined in Eq. (3) is a valid density operator for any vector 7
with |7#] <1 by proving it fulfils the following properties:

(i) Hermiticity: p = p.
(ii) Positivity: p > 0.
(iii) Normalisation: tr(p) = 1.

(c) Now do the converse: show that any qubit density operator may be written in the form of
Eq. (3).

(d) Check that the surface of the ball is formed by all the pure states, i.e.

1
p pure < pzi(ﬂ—i—f'-(}') with |7] = 1. (4)



