

Exercise 1. Singularities

In the lecture the Schwarzschild solution to the vacuum Einstein equations was introduced:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega.$$
 (1)

• Determine the scalar $\mathcal{R} = R_{abcd}R^{abcd}$.

[Hint: you may use (and prove) that for a diagonal metric the non-vanishing Christoffel symbols are

$$\Gamma^{\lambda}_{\mu\mu} = -\frac{\partial_{\lambda}g_{\mu\mu}}{2g_{\lambda\lambda}} , \qquad \Gamma^{\mu}_{\mu\lambda} = \frac{\partial_{\lambda}g_{\mu\mu}}{2g_{\mu\mu}} , \qquad \Gamma^{\mu}_{\mu\mu} = \frac{\partial_{\mu}g_{\mu\mu}}{2g_{\mu\mu}} , \qquad (2)$$

where $\mu \neq \lambda$ and there is no summation over repeated indices.]

[Hint: The only non-vanishing components of the Riemann tensor are R_{trrt} , $R_{t\phi\phi t}$, $R_{t\theta\theta t}$, $R_{r\phi\phi r}$, $R_{r\theta\theta r}$ and $R_{\phi\theta\theta\phi}$.]

• By checking the behavior of \mathcal{R} at r=2M (horizon) and r=0 (origin), argue that the horizon is only a coordinate singularity while the origin is a proper singularity, *i.e.*, show that \mathcal{R} diverges at r=0 but not at r=2M.

Exercise 2. Particle in Schwarzschild Background

Consider a free particle moving radially in the Schwarzschild background with initial position r_0 ($r_0 \ge 2M$) and initial radial velocity $\dot{r}|_{r=r_0} = 0$.

- Show that the particle reaches the horizon r = 2M in finite proper time.
- How long does the particle take to get to the horizon from the point of view of a static observer at infinity?

Exercise 3. Behind the horizon

Show that any particle behind the horizon of the Schwarzschild background, i.e. with r < 2M, must decrease its radial coordinate at a rate given by

$$\left| \frac{\mathrm{d}r}{\mathrm{d}\tau} \right| \ge \sqrt{\frac{2M}{r} - 1} \;, \tag{3}$$

independent of whether it is in geodesic motion or not.

Hence show that the maximum lifetime of any observer behind the horizon is $\tau = \pi M$, i.e., any object behind the horizon will be pulled into the singularity at r = 0 within this proper time. Show that this maximum time is attained by a purely radial (i.e. L = 0), free (i.e. geodesic) motion from r = 2M with $\dot{r}|_{r=2M} = 0$.

[Hint: it is possible to avoid integration. Notice that radial fall is a movement on half of a degenerated ellipse.]