

Exercise 1. Symmetries of Riemann and Weyl tensor

The Riemann tensor $R_{\mu\nu\rho\lambda}$ has the properties

$$R_{\mu\nu\rho\lambda} = -R_{\nu\mu\rho\lambda} , \qquad R_{[\mu\nu\rho]\lambda} = 0 , \qquad R_{\mu\nu\rho\lambda} = -R_{\mu\nu\lambda\rho} .$$
 (1)

i) Show that it satisfies

$$R_{\mu\nu\rho\lambda} = R_{\rho\lambda\mu\nu}$$
.

ii) The Ricci tensor is defined by

$$R_{\mu\nu} = R_{\mu\rho\nu\lambda} g^{\rho\lambda}$$
.

Show that the Ricci tensor is symmetric,

$$R_{\mu\nu}=R_{\nu\mu}$$
.

iii) For n > 2, where n is the dimension of the manifold, we define the Weyl tensor $C_{\mu\nu\rho\lambda}$ by the equation

$$R_{\mu\nu\rho\lambda} = C_{\mu\nu\rho\lambda} + \frac{2}{n-2} \left(g_{\mu[\rho} R_{\lambda]\nu} - g_{\nu[\rho} R_{\lambda]\mu} \right) - \frac{2}{(n-1)(n-2)} R g_{\mu[\rho} g_{\lambda]\nu} ,$$

where R is the scalar curvature defined by

$$R = R_{\mu\nu}g^{\mu\nu}$$
.

Show that the Weyl tensor has the same symmetry properties as the Riemann tensor, i.e.

$$C_{\mu\nu\rho\lambda} = -C_{\nu\mu\rho\lambda}$$
, $C_{[\mu\nu\rho]\lambda} = 0$, $C_{\mu\nu\rho\lambda} = -C_{\mu\nu\lambda\rho}$.

Furthermore, show that the Weyl tensor is traceless with respect to the contraction of any pair of indices.

Exercise 2. Metric and Riemann Tensor of 2-sphere

i) Show that in two dimensions, the Riemann tensor takes the form

$$R_{abcd} = Rg_{a[c}g_{d]b} . (2)$$

(Hint: First deduce that the Riemann tensor has only one independent component in two dimensions. Then show that $g_{a[c}g_{d]b}$ spans the vector space of tensors having the symmetries of the Riemann tensor.)

- ii) Determine the metric on the surface of a sphere of radius r in the usual spherical coordinates (θ, ϕ) . Determine also the inverse metric $g^{\alpha\beta}$.
- iii) Calculate the Riemann curvature tensor of the sphere. (Hint: The Riemann tensor in terms of the Christoffel symbols is given by

$$R^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma} \ .$$

Because of (i), there is only one independent component which you can take to be $R_{\theta\phi\theta\phi}$. Determine all other components in terms of it.)

Exercise 3. Affine Parametrisation of Curves

i) A geodesic $\gamma(t)$ is characterised by the property that the tangent vector is parallely propagated along itself, i.e., that the tangent vector $T = \frac{d\gamma(t)}{dt}$ satisfies

$$T^a \nabla_a T^b = \alpha T^b \ , \tag{3}$$

where α is some constant. Show that one can always find a parametrisation of the curve $t \equiv t(s)$ so that (3) becomes

$$S^a \nabla_a S^b = 0 ,$$

where S is the tangent vector with respect to s. The resulting parametrisation is called the affine parametrisation.

(Hint: Work in coordinates.)

- ii) Let t be an affine parameter of a geodesic γ . Show that any other affine parameter s of γ takes the form s = at + b, where a and b are constants.
- iii) Let $\gamma_s(t)$ be a smooth one-parameter family of geodesics, i.e., for each $s \in \mathbb{R}$, $\gamma_s(t)$ is a geodesic parametrised by an affine parameter t. The vector field $X = \frac{\partial}{\partial s}$ represents the displacement of nearby geodesics and is called the deviation vector. Because of (ii) there is a 'gauge freedom' in the definition of X since we can change the t-parameterisations in an s-dependent manner, i.e.,

$$t \mapsto t' = a(s)t + b(s)$$
.

Show that this modifies X by adding to it a multiple of $T = \frac{\partial}{\partial t}$. For the case where the geodesics are timelike or spacelike show that we can use this gauge freedom to choose X^a always orthogonal to T^b , i.e.,

$$g_{ab}X^aT^b = 0 .$$

(Hint: For the last claim, use the geodesic deviation equation

$$T^{\mu}\nabla_{\mu}(T^{\nu}\nabla_{\nu}X^{\lambda}) = -R_{\mu\nu\rho}{}^{\lambda}X^{\nu}T^{\mu}T^{\rho}.$$