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Exercise 1. Symmetries of Riemann and Weyl tensor

The Riemann tensor R, ) has the properties

i)

ii)

iii)

R;u/p)\ = _Rl/,up)\ ; R[;u/p])\ =0 ’ R,ul/p)\ = _R;u/)\p . (1)
Show that it satisfies
R,ul/p/\ = Rp)\,uu .

The Ricci tensor is defined by
R/j,l/ = Rupy)\ gpA .

Show that the Ricci tensor is symmetric,
R, =R, .

For n > 2, where n is the dimension of the manifold, we define the Weyl tensor C,,,,» by
the equation

Ruvpx = Crvpx + % <9u[pR)\]V - QV[pRA]u> - (71_1)2(71_2)]%9#[/)9)\111 ;
where R is the scalar curvature defined by
R=R,g" .
Show that the Weyl tensor has the same symmetry properties as the Riemann tensor, i.e.
Cuvpr = =Cuppx » C[WpP\ =0, Cuvpr = —=Cuxp -

Furthermore, show that the Weyl tensor is traceless with respect to the contraction of any
pair of indices.

Exercise 2. Metric and Riemann Tensor of 2-sphere

i)

ii)

iii)

Show that in two dimensions, the Riemann tensor takes the form

Rabcd - Rga[cgd}b . (2)

(Hint: First deduce that the Riemann tensor has only one independent component in
two dimensions. Then show that g,.gq; spans the vector space of tensors having the
symmetries of the Riemann tensor.)

Determine the metric on the surface of a sphere of radius r in the usual spherical coordi-
nates (6, ¢). Determine also the inverse metric g*7.

Calculate the Riemann curvature tensor of the sphere. (Hint: The Riemann tensor in
terms of the Christoffel symbols is given by

A A
RPopy = 0,I0, — 0,I0, + I‘Z oo =TI,

Because of (i), there is only one independent component which you can take to be Rggge-
Determine all other components in terms of it. )



Exercise 3. Affine Parametrisation of Curves

i)

ii)

iii)

A geodesic (t) is characterised by the property that the tangent vector is parallely prop-

agated along itself, i.e., that the tangent vector T = dz—(tt) satisfies

TV, T = aT? , (3)

where « is some constant. Show that one can always find a parametrisation of the curve
t = t(s) so that (3) becomes
S4V,S8b =0,

where S is the tangent vector with respect to s. The resulting parametrisation is called
the affine parametrisation.
(Hint: Work in coordinates.)

Let ¢ be an affine parameter of a geodesic . Show that any other affine parameter s of ~
takes the form s = at + b, where a and b are constants.

Let v5(t) be a smooth one-parameter family of geodesics, i.e., for each s € R, ~4(t) is a
geodesic parametrised by an affine parameter ¢t. The vector field X = % represents the

displacement of nearby geodesics and is called the deviation vector. Because of (ii) there
is a ‘gauge freedom’ in the definition of X since we can change the t-parameterisations in
an s-dependent manner, i.e.,

t—=t' = a(s)t+b(s) .

Show that this modifies X by adding to it a multiple of T" = %. For the case where the
geodesics are timelike or spacelike show that we can use this gauge freedom to choose X*
always orthogonal to T, i.e.,

gy XT? =0 .

(Hint: For the last claim, use the geodesic deviation equation

TV (T"V, X)) = =Ry, XVTHT? )



