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13.1. Jacobi theta functions

An important set of functions in the theory of modular formg| are the so-called Jacobi
theta functions. Here we consider the three functions
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where ¢ = ¢*™7. Here and from now on, 7 € H", where H* is the complex upper half

plane.

a) Show that
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b) In order to compute the behaviour of 8’s under the inversion 7 — —%, we can employ
the so-called Poisson resummation formula. Prove that, for any f : R +— C smooth
and small at infinityP] the following equality holds
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Hint: show that the function g(z) := >, f(z + n) is well-defined and periodic;
exploit this fact and that ) f(n) = ¢(0).

c) Using the Poisson resummation formula, show that
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d) The Dedekind 7 function is defined as

g2 ﬁ 1—q¢") (13.5)

'Modular forms are holomorphic functions f : Ht — C that, loosely speaking, “transform nicely”

under (finite index subgroups of) SL(2,Z). Here SL(2,Z) acts on z € H" as SL(2,Z) > v = (2}) 1z —
az+b
czid :

2A sufficient condition is that f € L'(R).
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Show that
(1)) = 502(7) 03(7) 0a(7) . (13.6)

Hence, show that

n(r+1) =enn(r), =1 = V—irn(r). (13.7)

13.2. Modular properties of Dedekind 7 function

In this exercise, we want to derive directly the modular transformation
n(=1) = V—irn(7) (13.8)

of the Dedekind eta function.

Consider first 7 = 7y, y real and positive. We will establish the transformation in eq. (|13.8])
along the imaginary axis since we can then analytically continue the result in the whole
H*. From now on, we thus fix 7 = iy and work with positive real y.

a) Show that eq. (13.8)) is equivalent to the equality
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b) Our aim is to prove eq. (13.9)) via residue calculus.
We now fix y > 0 and consider the function

1

Fo(z) = =5 cot [in(n+ 1)z] cot r(n_ﬁ)ﬂ .

” (13.10)

Let C be the parallelogram in the z complex plane that joins the vertices vy, i, —y, —1i.
Compute the integral [, F,(z) dz via the residue theorem and show that the limit for
n — oo of 27i times the sum of residues equals the 1.h.s. of eq. . Hint: there
are 4n simple poles and a triple pole you have to consider.

c) What is left to do is to show that

1
lim [ F,(z)dz = —§logy. (13.11)
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The tricky part is to show that we can liberally exchange sum and integration, so
that

lim [ F,(2) :/ lim an(z)d—Z (13.12)
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You can assume thi, and then show that this integral equals —% log yy. This completes
the proof.

3Notice that the sequence {zF,(z)} is uniformly bounded and convergent almost everywhere on C.
Moreover, each z F,, is (Lebesgue) integrable on each side of C; then eq. (13.12)) is a consequence of
Lebesgue’s dominated convergence theorem.
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