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13.1. Jacobi theta functions

An important set of functions in the theory of modular forms1 are the so-called Jacobi
theta functions. Here we consider the three functions

θ2(τ) =
∑

n∈Z+1/2

q
n2

2 = 2q
1
8

∞∏
n=1

(1− qn)(1 + qn)2 ,

θ3(τ) =
∑
n∈Z

q
n2

2 =
∞∏
n=1

(1− qn)(1 + qn−
1
2 )2 ,

θ4(τ) =
∑
n∈Z

(−1)nq
n2

2 =
∞∏
n=1

(1− qn)(1− qn−
1
2 )2 ,

(13.1)

where q = e2πiτ . Here and from now on, τ ∈ H+, where H+ is the complex upper half
plane.

a) Show that
θ2(τ + 1) =ei

π
4 θ2(τ) ,

θ3(τ + 1) = θ4(τ) ,

θ4(τ + 1) = θ3(τ) .

(13.2)

b) In order to compute the behaviour of θ’s under the inversion τ → − 1
τ
, we can employ

the so-called Poisson resummation formula. Prove that, for any f : R 7→ C smooth
and small at infinity2, the following equality holds∑

n∈Z

f(n) =
∑
n∈Z

f̃(n) , where f̃(y) :=

∫ ∞
−∞

e2πixyf(x) dx . (13.3)

Hint: show that the function g(x) :=
∑

n∈Z f(x + n) is well-defined and periodic;
exploit this fact and that

∑
n f(n) ≡ g(0).

c) Using the Poisson resummation formula, show that

θ2(− 1
τ
) =
√
−iτ θ4(τ) ,

θ3(− 1
τ
) =
√
−iτ θ3(τ) ,

θ4(− 1
τ
) =
√
−iτ θ2(τ) .

(13.4)

d) The Dedekind η function is defined as

η(τ) := q
1
24

∞∏
n=1

(1− qn) . (13.5)

1Modular forms are holomorphic functions f : H+ 7→ C that, loosely speaking, “transform nicely”
under (finite index subgroups of) SL(2,Z). Here SL(2,Z) acts on z ∈ H+ as SL(2,Z) 3 γ =

(
a b
c d

)
: z 7→

a z+b
c z+d .

2A sufficient condition is that f ∈ L1(R).
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Show that

[η(τ)]3 =
1

2
θ2(τ) θ3(τ) θ4(τ) . (13.6)

Hence, show that

η(τ + 1) = ei
π
12 η(τ) , η(− 1

τ
) =

√
−iτ η(τ) . (13.7)

13.2. Modular properties of Dedekind η function

In this exercise, we want to derive directly the modular transformation

η(− 1
τ
) =
√
−iτ η(τ) (13.8)

of the Dedekind eta function.

Consider first τ = iy, y real and positive. We will establish the transformation in eq. (13.8)
along the imaginary axis since we can then analytically continue the result in the whole
H+. From now on, we thus fix τ = iy and work with positive real y.

a) Show that eq. (13.8) is equivalent to the equality

∞∑
m=1

1

m

1

1− e2πmy
−
∞∑
m=1

1

m

1

1− e2πm/y
− π

12

(
y − 1

y

)
= −1

2
log y . (13.9)

b) Our aim is to prove eq. (13.9) via residue calculus.

We now fix y > 0 and consider the function

Fn(z) = − 1

8z
cot
[
iπ(n+ 1

2
)z
]

cot

[
π(n+ 1

2
)z

y

]
. (13.10)

Let C be the parallelogram in the z complex plane that joins the vertices y, i,−y,−i.
Compute the integral

∫
C
Fn(z) dz via the residue theorem and show that the limit for

n → ∞ of 2πi times the sum of residues equals the l.h.s. of eq. (13.9). Hint: there
are 4n simple poles and a triple pole you have to consider.

c) What is left to do is to show that

lim
n→∞

∫
C

Fn(z) dz = −1

2
log y . (13.11)

The tricky part is to show that we can liberally exchange sum and integration, so
that

lim
n→∞

∫
C

Fn(z) =

∫
C

lim
n→∞

zFn(z)
dz

z
. (13.12)

You can assume this3, and then show that this integral equals−1
2

log y. This completes
the proof.

3Notice that the sequence {zFn(z)} is uniformly bounded and convergent almost everywhere on C.
Moreover, each z Fn is (Lebesgue) integrable on each side of C; then eq. (13.12) is a consequence of
Lebesgue’s dominated convergence theorem.
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