Prof. M. Gaberdiel

7.1. Physical states and upper bound on critical dimension

We define the generators $K_m = k_\mu \alpha_m^\mu$ with $k^\mu = \frac{1}{2}(1, 0, \dots, 0, -1)$, and denote by \tilde{L}_{-2} the combination $\tilde{L}_{-2} = L_{-2} + \frac{3}{2}L_{-1}^2$, where L_m are the Virasoro generators with c = D.

a) Show that the commutation relations between the L_m and the K_n are of the form

$$[L_m, K_n] = -nK_{m+n} , [K_m, K_n] = 0 . (7.1)$$

b) Consider the state

$$|\psi\rangle = \left[\tilde{L}_{-2} + \left(\frac{D}{2} - 13\right)(K_{-2} + 2K_{-1}^2)\right]|l\rangle ,$$
 (7.2)

where $|l\rangle$ has momentum squared $l^2=-1$ so that $L_0|l\rangle=-|l\rangle$ (we work with $\alpha'=1$) and moreover $K_m|l\rangle=0$ for m>0. Show that $|\psi\rangle$ is physical for any D. Calculate its norm and show that

$$\langle \psi | \psi \rangle = 13 - \frac{D}{2} \ . \tag{7.3}$$

In particular, this calculation shows that D=26 is the upper critical dimension. Hint: compute $L_2|\psi\rangle$, $L_1|\psi\rangle$ and $K_0|l\rangle$.

7.2. Basis for Fock space

With the notations of the previous question, let \mathcal{F}^M be the space of states $|f\rangle$ that satisfy

$$K_m|f\rangle = L_m|f\rangle = 0 \quad \text{for } m > 0,$$
 (7.4)

as well as $R|f\rangle = M|f\rangle$, where $R = L_0 - p^2$ counts the excitation number. We take the momentum to be of the form $p = p_0 + Lk$ (where L is an arbitrary integer) with $p_0 = (0, 0, \dots, 0, 1)$. We introduce the short-hand notation

$$|\{\lambda,\mu\},f,M,\nu\rangle = L_{-1}^{\lambda_1} \cdots L_{-m}^{\lambda_m} K_{-1}^{\mu_1} \cdots K_{-n}^{\mu_n} |f,M,\nu\rangle ,$$
 (7.5)

where $|f, M, \nu\rangle$ is an orthonormal basis for \mathcal{F}^M — the different basis vectors are labelled by ν .

We make the following claim: the vectors of the form

$$|\{\lambda,\mu\},f,M,\nu\rangle \tag{7.6}$$

give a basis for the states with $R = M + \sum_r r \lambda_r + \sum_s s\mu_s = N$, and, as N varies, for the whole vector space of states with momentum of the form $p = p_0 + Lk$. This means that at a given level N, the full space of states can be decomposed into \mathcal{F}^N , as well as the states that descend from $\mathcal{F}^{N'}$, N' < N through eq. (7.5).

- a) Verify this claim for R = 1 and a given $|p\rangle$. Hint: Consider all descendants generated by α^{μ}_{-m} . Do the analysis for general spacetime dimension D.
- **b)** Under the assumption that the claim holds, count the number of states at R=2 that satisfy eq. (7.4). What do you expect for R>2? (Both of these questions should be answered for general D.)
- c) Verify the claim for R = 2, D = 4 and p = (0,0,0,1). Hint: compute the descendants from the states at R = 0,1 via the action of L_{-i} , K_{-i} , i > 0. Count then the states that are annihilated by L_1 , L_2 , K_1 , K_2 . Confirm that your answer agrees with b) above.