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6.1. Lorentz covariance and critical dimension of bosonic string
theory

The quantum Lorentz generator M−I is given by the expression
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Recall that the definition of the transverse Virasoro generators is
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that pI =
√

2α′αI0 and also that
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Here and throughout this exercise two repeated upper Lorentz indices are contracted with
the transverse euclidean metric ηIJ = δIJ .

Show that the following equality holds (for m > 0):
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and hence compute the critical dimension and normal-ordering shift for L⊥0 .

Hint: recall (or show) that
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then carefully commute the M ’s through the α’s. Recall also the action of M−I on the
external states and the action of L⊥0 !

6.2. State counting

The Fock space H of the open string is generated from the ground state |p+, ~pT 〉 by the
action of the creation operators αI−n, n > 0. Recall that the ground state is annihilated
by the positive-level oscillators.

We want to derive the generating function for the bosonic string spectrum, that is a
function f(q) =

∑∞
n=0 c(n)qn such that the coefficient c(n) counts the number of states

at level n.

Argue that is given by (q times) the trace
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is the mass-squared operator.

Moreover, compute the trace and show that
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is the Dedekind eta function.

6.2


