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6.1. Lorentz covariance and critical dimension of bosonic string
theory

The quantum Lorentz generator M ! is given by the expression
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Recall that the definition of the transverse Virasoro generators is
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that p’ = v2a/af and also that
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Here and throughout this exercise two repeated upper Lorentz indices are contracted with

the transverse euclidean metric n!/ = §77.
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Show that the following equality holds (for m > 0):
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and hence compute the critical dimension and normal-ordering shift for L.

Hint: recall (or show) that
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then carefully commute the M’s through the a’s. Recall also the action of M~! on the
external states and the action of Lg!

6.2. State counting

The Fock space H of the open string is generated from the ground state [p™, pr) by the
action of the creation operators a’,, n > 0. Recall that the ground state is annihilated
by the positive-level oscillators.

We want to derive the generating function for the bosonic string spectrum, that is a
function f(q) = > .-, c(n)g"™ such that the coefficient ¢(n) counts the number of states
at level n.

Argue that is given by (¢ times) the trace
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where
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is the mass-squared operator.

Moreover, compute the trace and show that
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is the Dedekind eta function.
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