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Exercise 1. Tight-binding model

Consider non-interacting particles on a lattice of N sites with periodic boundary condition,
i.e. on a discrete ring. The position variable becomes a discrete variable ~r → xi and the field

operators with spin label s, Ψ
(†)
s (~r), become Ψ

(†)
s,i ≡ Ψ

(†)
s (xi).

(a) Find the eigensolutions of the problem for the Hamiltonian

H = −t
∑
s

N−1∑
j=0

(
Ψ†s,j+1Ψs,j + Ψ†s,jΨs,j+1

)
, (1)

by the use of the Fourier transform of the field operators

as,k =
1√
N

N−1∑
j=0

e−ijkΨs,j , k ∈
{

2π

N

(
n−

⌊
N − 1

2

⌋) ∣∣∣∣n = 0, 1, 2, . . . , N − 1

}
, (2)

where bxc denotes the integer part of x. Write the result in occupation number basis of

the eigenstates. How can the terms Ψ†s,j+1Ψs,j be interpreted?

(b) Given the particles are fermionic, the transformation

bs,k =
1√
N

∑
j

e−ijkΨ†s,j (3)

diagonalizes the Hamiltionian as well. Rewrite the problem in the occupation number

basis of the b
(†)
k operators. What is the difference between the two formulations, how are

they related?

(c) Consider now a fixed number of M particles to be in the system. Calculate the leading
order of the entropy in the high temperature expansion T → ∞. Compare it to the case
of free fermions. Can you recover the particle-hole symmetry in the result?

(d) Find the magnetic susceptibility using the fluctuation-dissipation theorem

χ =
1

N

1

kBT

[
〈M2

z 〉 − 〈Mz〉2
]
, (4)

where the magnetization operator is defined by

Mz =
gµB
~
∑
j

Sj = µB

N∑
j=0

∑
s=±1

sΨ†s,jΨs,j . (5)

Determine the result in the low-temperature limit by taking N →∞.

Hint: Rewrite the magnetization operator in occupation basis and use the Fermi-Dirac
distribution.
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(e*) Restricting the problem to spinless Fermions and turning on a magnetic field (introduced
in a specific gauge) perpendicular to the ring, changes the Hamiltonian to

H = −t
N−1∑
j=0

(
e−iϕΨ†j+1Ψj + eiϕΨ†jΨj+1

)
. (6)

In this case, calculate the expectation value of the current density operator

j =
1

N

∑
n

jn , jn = −i
(

Ψ†n+1Ψn −Ψ†nΨn+1

)
. (7)

Interpret the current density operator in terms of particles hopping from site to site.

Exercise 2. Exact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable interacting
models, the one-dimensional Ising model (Ising chain). Consider a chain of N + 1 Ising-spins
with free ends and nearest neighbor coupling −J (J > 0 for ferromagnetic coupling)

HN+1 = −J
N∑
i=1

σiσi+1, σi = ±1. (8)

We are interested in the thermodynamic limit of this system, i.e. we assume N to be very large.

(a) Compute the partition function ZN+1 using a recursive procedure.

(b) Find expressions for the free energy and entropy, as well as for the internal energy and
heat capacity. Compare your results to the ideal paramagnet.

(c) Calculate the magnetization density m = 〈σj〉 where the spin σj is not close to either end
of the chain. Which symmetries does the system exhibit? Interpret you result in terms of
symmetry arguments.

(d*) Show that the spin correlation function Γij = 〈σiσj〉 − 〈σi〉〈σj〉 decays exponentially with
increasing distance |j − i| on the scale of the so-called correlation length ξ, i.e. Γij ∼
e−|j−i|/ξ. Show that ξ = −[log(tanhβJ)]−1 and interpret your result in the limit T → 0.

(e*) Calculate the magnetic susceptibility in zero magnetic field using the fluctuation-dissipation
relation of the form

χ(T )

N
=

1

kBT

N/2∑
j=−N/2

Γ0j , (9)

in the thermodynamic limit, N →∞. For simplicity we assume N to be even. Note that
χ(T ) is defined to be extensive, such that we obtain the intensive quantity by normalization
with N .

(f*) Approximate 1/χ(T ) up to first order in 2βJ in the high-temperature limit (β → 0). Use
this result to calculate the Weiss temperature ΘW, which is defined by 1/χ(ΘW) = 0.
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