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Exercise 1. Planets as black bodies?

The Stefan-Boltzmann law states that the emission power per unit surface area of a black body
reads

Pem = σT 4 with σ =
π2k4B

60~3c2
≈ 5.6704 · 10−8 Js−1m−2K−4. (1)

(a) Making use of the Stefan-Boltzmann law, estimate the temperature of the Earth, Mars
and Venus as if they were black bodies.

Hint. Compute the emission power of the sun as if it were a black body and assume that the energy

emitted and absorbed by each planet has to balance.

(b) The correct results for the average temperatures are 288 K for the Earth, 218 K for Mars
and 735 K for Venus. How do they compare with your estimates? What could be the
reasons of the discrepancies?

Exercise 2. Magnetostriction in a Spin-Dimer-Model.
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We consider a dimer consisting of two spin-1/2 particles
with the Hamiltonian

H0 = J
(
~S1 · ~S2 + 3/4

)
,

with J > 0. We already considered a dimer in exer-
cise 4.2, but note that the energy levels are now shifted
by a constant. This time, however, the distance between the two spins is not fixed and they are
connected to each other by a spring. The spin–spin coupling constant depends on the distance
between the two sites such that the Hamilton operator of the system is

H =
p̂2

2m
+
mω2

2
x̂2 + J(1− λx̂)

(
~S1 · ~S2 + 3/4

)
, (2)

where λ ≥ 0, m is the mass of the two constituents, mω2 is the spring constant, and x denotes
the displacement from the equilibrium distance d between the two spins (defined for no spin-spin
interaction).

(a) Calculate the canonical partition function, the internal energy, the specific heat and the
entropy. Discuss the behavior of the entropy in the limit T → 0 for different values of λ.

Hints. Rewrite the Hamiltonian using the total spin operator as in Exercise 4.2, and bring it by
completing the square to the following form

H =
p̂2

2m
+

1

2
mω2 X̂2 + J̃ n̂t , (3)

where n̂t ≡ ~S2/2 is the projector on the triplet subspace, X̂ and J̃ are appropriately shifted quantities

of x̂ and J (X̂ may depend on n̂t), and we have set ~ = 1. Then note that X̂ and p̂ satisfy the

same commutation relations as x̂ and p̂ such that the two first terms of (3) describe a quantum

harmonic oscillator.
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(b) Calculate the expectation value of the distance between the two spins, 〈d+ x̂〉, as well as
〈(d + x̂)2〉. How are these quantities affected by a magnetic field in z-direction, i.e., by
adding an additional term in (2) of the form

Hm = −gµBH
∑
i

Ŝz
i ?

Hints. Write first these expectation values in terms of 〈n̂t〉, which you can calculate explicitly.
Recall that for a harmonic oscillator, 〈X̂〉 vanishes, as well as 〈â〉, 〈â2〉 etc.

Then recalculate the partition function, adding the magnetic field term and see how this affects

〈n̂t〉.

(c) If the two sites are oppositely charged with charge ±q, the dimer forms a dipole with
moment P = q 〈d+ x̂〉. This dipole moment can be measured by applying an electric field
E along the x-direction, resulting in the additional Hamiltonian term

Hel = −q(d+ x̂)E . (4)

Calculate the susceptibility of the dimer at zero electric field,

χ
(el)
0 = − ∂2F

∂E2

∣∣∣∣
E=0

, (5)

and show that the simple form of the fluctuation-dissipation theorem, which asserts that

χ
(el)
0 ∝

〈
(d+ x̂)2

〉
−
〈
d+ x̂

〉2
, (6)

is not valid here.

Hint. Redo the calculations from (a) with Hel included (but without magnetic field), by completing

the square with a different definition of X̂ and J̃ .

(d) Proceeding as in Section 2.5.3 of the lecture notes, derives the correct fluctuation-dissipation
theorem for this system.

Hint. Choosing the variable X̂ from (c) as your fundamental degree of freedom introduces a de-

pendence on E in x̂, and hence in the coupling (4).
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