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Exercise 1. Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic
potential and compare it with the classical case (see Exercise Sheet 3). The eigenenergies of the
gas are given by

€a = hw(az +ay+az), (1)

where a = (az,ay,a;), with a; € {0,1,2,...}, labels the states and the zero point energy ey =
3 hw/2 was omitted. The occupation number corresponding to state a is given by na.

(a) Consider the high-temperature, low-density limit (z < 1). Derive the grand canonical
partition function Z; of this system and compute the grand potential €2y. Show that

Qf X f4(2) > (2)
where the function fs(z) is defined as
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(b) Calculate the particle number (V) and the internal energy U as a function of N. In order
to get U in terms of N (instead of dealing with the chemical potential), introduce the
parameter
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and relate it to z using the high-temperature, low-density expansion of (N) (up to O(z?)).
Interpret the condition p < 1.

Finally, expand U up to second order in p, relating it to N.
(¢c) Compute the heat capacity C'. Which quantity has to be fixed in order to do this?
(d) Compute the isothermal compressibility k7.

(e) Interpret your results for U, C, and k7 by comparing them with the corresponding results
for the classical Boltzmann gas. How do the quantum corrections influence the fermionic
system?



Exercise 2. Sommerfeld expansion and density of states

Consider a thermally equilibrated system of non-interacting fermions with single particle states
labeled by the quantum numbers v and corresponding energies ¢,,.

a ork in the grand canonical ensemble and write the particle and energy densities in the
Work in th d ical bl d write th ticl d densities in th
form

n=oS ) = [deglo)f(e), (5)
!
u=p Sedle) = [desgle)r(e), (©

where f(e) is the Fermi-Dirac distribution function. What is g(e)?

(b) The above expressions for n and u are of the form
/ de H(2)f(2) (7)

For temperatures T' < % (which is typically the case for metals), H(e) is slowly varying

in the region where Z—é #£ 0 significantly and the Sommerfeld expansion’
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becomes handy. Make use of this expansion up to (’)(ICBTT)2 to expand n and w in 7.

Hint: Use (in a self-consistent way) that y — er o< T2 in leading order in 7' and expand
Iz €F
/ %H@w/ de H(2) + (1 — ) H(ep) ()

(c) Find the chemical potential o and the specific heat ¢, at constant density n.

(d) Determine g(e) for the case of a free Fermi gas and calculate its chemical potential and
specific heat from the previous results. Compare your result for the specific heat with the
one for a classical gas.

(e) For the free Fermi gas ¢'(ep) > 0. This does not need to be the true in more complex
systems such as solids (cf., e.g., semiconductors). What are the consequences of ¢'(ex) < 07
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1For a reference on the Sommerfeld expansion see, e.g., Asheroft, N. W. and Mermin N. D., Solid State Physics,
Holt, Rinehart and Winston, 1976.



