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Exercise 1. Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic
potential and compare it with the classical case (see Exercise Sheet 3). The eigenenergies of the
gas are given by

εa = ~ω(ax + ay + az) , (1)

where a = (ax, ay, az), with ai ∈ {0, 1, 2, ...}, labels the states and the zero point energy ε0 =
3 ~ω/2 was omitted. The occupation number corresponding to state a is given by na.

(a) Consider the high-temperature, low-density limit (z � 1). Derive the grand canonical
partition function Zf of this system and compute the grand potential Ωf . Show that

Ωf ∝ f4(z) , (2)

where the function fs(z) is defined as

fs(z) = −
∞∑
l=1

(−1)l
zl

ls
. (3)

(b) Calculate the particle number 〈N〉 and the internal energy U as a function of N . In order
to get U in terms of N (instead of dealing with the chemical potential), introduce the
parameter

ρ ≡

(
~ω〈N〉1/3

kBT

)3

(4)

and relate it to z using the high-temperature, low-density expansion of 〈N〉 (up to O(z2)).
Interpret the condition ρ� 1.

Finally, expand U up to second order in ρ, relating it to N .

(c) Compute the heat capacity C. Which quantity has to be fixed in order to do this?

(d) Compute the isothermal compressibility κT .

(e) Interpret your results for U , C, and κT by comparing them with the corresponding results
for the classical Boltzmann gas. How do the quantum corrections influence the fermionic
system?
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Exercise 2. Sommerfeld expansion and density of states

Consider a thermally equilibrated system of non-interacting fermions with single particle states
labeled by the quantum numbers ν and corresponding energies εν .

(a) Work in the grand canonical ensemble and write the particle and energy densities in the
form

n =
1

V

∑
ν

f(εν) =

∫
dε g(ε)f(ε) , (5)

u =
1

V

∑
ν

ενf(εν) =

∫
dε εg(ε)f(ε) , (6)

where f(ε) is the Fermi-Dirac distribution function. What is g(ε)?

(b) The above expressions for n and u are of the form∫ ∞
−∞

dεH(ε)f(ε) . (7)

For temperatures T � εF
kB

(which is typically the case for metals), H(ε) is slowly varying

in the region where df
dε 6= 0 significantly and the Sommerfeld expansion1

∫ ∞
−∞

dεH(ε)f(ε) =

∫ µ

−∞
dεH(ε)+

π2

6
(kBT )2H ′(µ)+

7π4

360
(kBT )4H ′′′(µ)+O

(
kBT

µ

)6

(8)

becomes handy. Make use of this expansion up to O
(
kBT
µ

)2
to expand n and u in T .

Hint: Use (in a self-consistent way) that µ− εF ∝ T 2 in leading order in T and expand∫ µ

−∞
dεH(ε) ≈

∫ εF

−∞
dεH(ε) + (µ− εF )H(εF ) . (9)

(c) Find the chemical potential µ and the specific heat cv at constant density n.

(d) Determine g(ε) for the case of a free Fermi gas and calculate its chemical potential and
specific heat from the previous results. Compare your result for the specific heat with the
one for a classical gas.

(e) For the free Fermi gas g′(εF ) > 0. This does not need to be the true in more complex
systems such as solids (cf., e.g., semiconductors). What are the consequences of g′(εF ) ≤ 0?

Office Hours: Monday, October 27, 8–10 AM (Roman Süsstrunk, HIT K 23.7).

1For a reference on the Sommerfeld expansion see, e.g., Ashcroft, N. W. and Mermin N. D., Solid State Physics,
Holt, Rinehart and Winston, 1976.
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