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Exercise 5.1 Classical channels as TPCPMs.

a) Take the binary symmetric channel p,

Recall that we can represent the probability distributions on both ends of the channel as quantum states
in a given basis: for instance, if Px(0) = ¢, Px(1) = 1 — g, we may express this as the 1-qubit mized
state px = q |0)(0] + (1 —¢q) [1)(1].

What is the quantum state py that represents the final probability distribution Py in the computational
basis?

‘We have
Py(0) = Px(2)Py|x=2(0) = ¢(1 —p) + (1 — q)p

Py(1) =gp+ (1 —q)(1—p),
which can be expressed as a quantum state p, = [¢(1—p)+(1—¢)p] |0){0|+[gp+ (1 —¢)(1—p)] [1)(1] €
L(Hy).

b) Now we want to represent the channel as a map

Ep : S(Hx) — S(Hy)
pPX — py-

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map £ :
S(Hx) = S(Hy) is a decomposition {Ey}, of operators E, € Hom(Hx,Hy), > EnE," =1, such

that
E(px) = ErpxEy'.
k

Find an operator-sum representation of Ep.

We take four operators, corresponding to the four different “branches” of the channel,

Eoo = /1= pl0){0]
Eo1 = /p|1){0]
Ei0 = /pl0)(1]

E1_>1 = \/1 —p|1><1|



To check that this works for the classical state px, we do

S(PX) = Z Eac—>y PX EI—W

zy

=" Busy [d0)0] + (1= )] B,

(1= p) 10)(01[gl0) 0] + (1 = g)[1) (1] I0)(0
+p [1)(01[al0)(0] + (1 = @)1 (1] 10)(1]
[ 1
|

1
+p 10)(1][gl0)(0] + (1 = @)1 (1] 11)(0]

+ (1= ) [1(1]]al0)0] + (1 = @) (1]] 1)1
=4(1— ) [0)(0

+ap [1)(1]
+ (1 = q)p [0)(0]
+ (1= g)(1—p) 1)1 = py.

¢) Now we have a representation of the classical channel in terms of the evolution of a quantum state.
What happens if the initial state px is not diagonal in the computational basis?

In general, we can express the state in the computational basis as px = >, a;[i)(j|, with the usual
conditions (positivity, normalization). Applying the map gives us

)= 3 B [Zaul Gl B,
1) \0><0|[Zaij\z‘><j|]|o><0|
+p 1><0|[Z;Jm><j|}|o><1|
+p |01 [Zam il

p) 1) 1|[Zau| Gl mal

=a11(1 —p) [0){(0] + arrp [1)(1]
+ ag2p [0)(0] + ana(1 — p) [1)(1].

Using a1 := a0 = 1 — a, we get E(px) = [e(1 —p) + (1 = a)p] [0){0] + [ap + (1 — a)(1 —p)] [1){1].
The channel ignores the off-diagonal terms of px: it acts as a measurement on the computational basis
followed by the classical binary symmetric channel.

d) Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y, defined by

the conditional probabilities {Py|X:m(y)}w.

Ezpress p as a map &, : S(Hx) = S(Hy) in the operator-sum representation.



We generalize the previous result as

Ep(px) =Y Prix—s(v) ly)(z|px]|a)(y]

= ZEx_prETx =Y, Eay =\/Prix=2y) ly){z].
z,y

To see that this works, take a classical state px = > Px(z) |z)(z| as input,
Eplpx) = > Prix=aly) ln)al (D Px(@) 2y a'])2) y]
T,y x’
= Pyix=(y) Px(@) |y)(yl
@y
=> P, vyl
y

Exercise 5.2 Different Quantum Channels

Consider two single-qubit Hilbert spaces Ho and Hp and a CPTP map
Ep: S(Ha) — S(HB)
1
p—py+(1-pp,
which is called depolarizing channel.

a) Find a Kraus representation for £,.
For simplicity of notation, we denote the Pauli matrices by X,Y, Z.

Remembering that X2 =Y2=22=1, XY =YX =2,YZ=-2Z2Y=Xand ZX =-XZ =Y,
you can verify that

1
1= 5(p+XpX +YpY + ZpZ).
From this follows the operator sum representation { M},

1 M2=@X, M?,:@Y, M, = Y7

’ 2 2

ol

b) What happens to the radius ¥ when we apply E,7 What is the physical interpretation of this?

Using the result from part a) we have
_ D
Ep) =51+ ~p)p
1 =
= 5(]1+(17p) 7 X)

Thus, points on a sphere with radius r are mapped to a smaller sphere with radius (1 — p)r — they
get more mixed in that sense. In particular, pure states will not remain pure during this CPM.

¢) Find Kraus representations for the following qubit channels



(i) The dephasing channel: p — p' = E(p) = (1 — p)p + pdiag(poo, p11) (the off-diagonal elements

are annihiliated with probability p).

The dephased output is the same as measuring the state in the standard basis: diag(pgo, p11) =
Z;‘:o PjpP; for P; = |j)(j|. Thus possible Kraus operators are Ay = /1 —pl, A; = \/pF;,
j = 0,1. But we can find a representation with fewer Kraus operators. Notice that o,po, =

( poo —po1). Thus (p+0.po.)/2 = diag(poo, p11) and p’ = Z}:o Aij; for Ag = /1 —p/21

—pP10 P11

and A; = +/p/20..

(ii) The amplitude damping (damplitude) channel, defined by the action |00) — |00}, |10) — /1 — p|10)+

J/Pl01)

From the unitary action we can read off the Kraus operators since U|¢)|0) = >, Ag|Y)|k).

1

Therefore Ag = (0 \/107]7) and A; = (O \6]3>

0

Exercise 5.3 The Choi Isomorphism

Consider the family of mappings between operators on two-dimensional Hilbert spaces

1 1
Eaip = (l—a)?2+a(?2+ampaz+azpaw), 0<a<l,

where {o;}, are Pauli matrices.

a) Use the Bloch representation to determine for what range of a these mappings are positive.

happens to the Bloch sphere?
The two-dimensional state space S(Hz) is isomorphic to the unit sphere on R3:

1 1+Z CIJ—Zy 2 2 2
= - < .
P (x—i—iy l—z)’ vy sl

We apply the map to this state and get

, 1 14 2ax 20z
20z 1—2ax

)

(1)

What

The mapping is trace-preserving, hence it is positive if and only if the determinant of p’ is positive for

all allowed values of z, y and z. The determinant is given by

1
det(p’) = 1(1 —40’r? — 40°2?)
1
> 1 a?.

. " 1
The map is positive for 0 < a < 3.

b) Calculate the analogs of these mappings in state space by applying the mappings to the fully entangled

state as follows:
1

0o = (Ea ®D[|ONT]],  |T) NG

(100) + [11)).

For what range of a is the mapping a CPM?

(2)

We need to find an expression for £ ® Z(|U)(¥|4r). Let us see how we can extend a TPCPM on

composite systems. Suppose we have a TPCPM described by

E(pa) = ZXZ'PAYi-



Note that this is not the operator-sum representation, as Y; is not necessarily X;T.

When we apply the composed map to a product of matrices of the form M ® N (not necessarily a valid
quantum state), we have

[E@II(M e N) =[E(M)]@[Z(N)]

= [Z X;MY;

=Y [Xi®IlIMeN[Y;®1].

® [IN1]

But any density operator can be written as par = Zm n Cmn My @ Ny, and TPCMs are linear maps,
SO

E®TI](par) = [€ @ T] (Z Cmn Mo ® Nn>

m,n

= amnl€ @ T] (M, ® Ny)

m,n

:Zam” <Z[Xi®]l]Mm®Nn[Yi®M>

i

=Y xi®1] (Z My, @ Nn> [Y; @ 1]

:Z[Xi@’]l]PAR[Yi@]l]

K3

In the case of this particular map, we have

1 1
Ealpa)=(1—-a) 72 + o (72 + oLpac, + Uszaz)

1
- 72 +a (04pa0. + 0.pa0s)

1

= 1 (II-ZPAI]-2 + OxPATY + OyPATYy + Uszaz) +« (szAJz + UZPAJz)

1
o ®L(par) = § (Lsparls + [02 @ Lo]par(oy @ Lo] + [0, ® La)pagloy ® Lo] + [0, ® La]paglo. @ 1))

+a ([ @ La)parlo. @ Lo] + [0 @ La)par(os ® 12]),

with
0010 00 —i 0 10 0 0
000 1 00 0 —i 01 0 0
ox@la=1| 4 g g g | w®L=| o g o | == 4 o |
0100 0 i 0 0 00 0 -1

in the computational basis. When we apply this map to the fully entangled state we get

1 0 0 1 1 2a 2c 0

1 0 0 00 1 2a 1 0 —2«

|\Il><‘l" - 5 00 0 0 3 goc ®I(|\I/><\I’I) - Z 20 0 1 —2a
1 0 0 1 0 —2a —2« 1



We know that because of the way the Choi isomorphism is designed, a map £ is completely positive if
and only if the matrix £ ® Z (|¥)(¥|) is non negative. In this case, the eigenvalues of that matrix are
1 1

AN=X== M=-+a,

aTy Ty TeTy

so we conclude that the map &, is completely positive for 0 < o < i.

Find an operator-sum representation of €, for a = 1/4.

Note: In this solution we use results from pages 4245 of the script. However, we adopted a slightly
different notation. Our reference system R, that is a copy of A, is called A’ in the script, and our
purifying system P is labeled R there. Also, in the script it is considered the extension Z ® &£, while
we have £ ® 7.

The Stinespring dilation tells us that for any TPCPM €4, p from a system A to a system B, there is
a system P where one can find an isometry U from A to B ® P that satisfies

Eamp:parTrp(Uaspp pa Uy pp)-

If we know how to find U, it comes in a very nice form, such that it is direct to obtain the operator-sum
representation of £ by tracing out system P. It takes four steps to find the operator-sum representation
of £:

1. We apply the Choi-Jamiolkowski isomorphism (CJI) on the map,
7:8a5B = [EasB @ Lrr] (|¥)(V|ar) =: 0BR,

obtaining a density matrix cggr, where R is a copy of A — the correspondent Hilbert spaces,
H 4 and Hpg, have equivalent bases, {|z’>A/R}i.

2. We purify oppr using an auxiliar system P,
|®)prp : Trp(|2)(P]) = oBR.
3. We apply the inverse of the CJI on |®), and obtain a very special map,
7 (|®)(®|BrRP) = UasBp i pa = Uasssp pa Uspp,

where U is an isometry.

4. We trace out the purifying system P and recover &, in the operator-sum representation,

Trp(Uaspp) = EasB.

Let us now apply this protocol to our map. We had

1 2« 2a 0
1] 2 1 0 —2a
LOT(NWD=71 20 0 1 -2

0 —2a —2« 1

This matrix has eigenvalues and eigenvectors

1 1 1 1
A== - M= - 2= - = -
a=y «, a = a =y a 4+a,
—1 0 1 -1
1 1 1 -1 1 0 1 -1
1\ _ — 2\ __ 3\ 4y _ =
|U >_ 2 1 ) |U> \/i 1 9 ‘U> \/i 0 ’ |U> _1
1 0 1 1



The eigenvectors do not depend on «, and their Schimdt decompositions are all of the form

i 1
vy = 5 (166) @100 +16) @ 1)),
with
1
=5 (1), PR =-, B =l0).
1 1 2 3
ph=—( 10)+m), =), =1,
V2
This gives us
=V2 )\ Z ‘be Te‘A
= A (|b0><0| + b))
PLIVLS
for £a(pa) =2 ) NeMEp o M**. The matrices M* are

M =

1 /-1 1 s (0 1 s (10
) e=(hg) (o),

[bo) =

(=10 -m),

o) = —= (= 10)+11)).

Sl =Sl



