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Exercise 5.1 Classical channels as TPCPMs.

a) Take the binary symmetric channel p,

1 - p

1 - p

p
p

X Y

.

Recall that we can represent the probability distributions on both ends of the channel as quantum states
in a given basis: for instance, if PX(0) = q, PX(1) = 1 − q, we may express this as the 1-qubit mixed
state ρX = q |0〉〈0|+ (1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the computational
basis?

We have

PY (0) =
∑
x

PX(x)PY |X=x(0) = q(1− p) + (1− q)p

PY (1) = qp+ (1− q)(1− p),

which can be expressed as a quantum state ρy = [q(1−p)+(1−q)p] |0〉〈0|+[qp+(1−q)(1−p)] |1〉〈1| ∈
L(HY ).

b) Now we want to represent the channel as a map

Ep : S(HX) 7→ S(HY )

ρX → ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map E :
S(HX) → S(HY ) is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),

∑
k EkEk

† = 1, such
that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.

We take four operators, corresponding to the four different “branches” of the channel,

E0→0 =
√

1− p|0〉〈0|
E0→1 =

√
p|1〉〈0|

E1→0 =
√
p|0〉〈1|

E1→1 =
√

1− p|1〉〈1|.
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To check that this works for the classical state ρX , we do

E(ρX) =
∑
xy

Ex→y ρX E†x→y

=
∑
xy

Ex→y

[
q|0〉〈0|+ (1− q)|1〉〈1|

]
E†x→y

=(1− p) |0〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈0|

+ p |1〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈1|

+ p |0〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈0|

+ (1− p) |1〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈1|

=q(1− p) |0〉〈0|
+ qp |1〉〈1|
+ (1− q)p |0〉〈0|
+ (1− q)(1− p) |1〉〈1| = ρY .

c) Now we have a representation of the classical channel in terms of the evolution of a quantum state.
What happens if the initial state ρX is not diagonal in the computational basis?

In general, we can express the state in the computational basis as ρX =
∑
ij αij |i〉〈j|, with the usual

conditions (positivity, normalization). Applying the map gives us

E(ρX) =
∑
xy

Ex→y

[∑
ij

αij |i〉〈j|
]
E†x→y

=(1− p) |0〉〈0|
[∑
ij

αij |i〉〈j|
]
|0〉〈0|

+ p |1〉〈0|
[∑
ij

αij |i〉〈j|
]
|0〉〈1|

+ p |0〉〈1|
[∑
ij

αij |i〉〈j|
]
|1〉〈0|

+ (1− p) |1〉〈1|
[∑
ij

αij |i〉〈j|
]
|1〉〈1|

=α11(1− p) |0〉〈0|+ α11p |1〉〈1|
+ α22p |0〉〈0|+ α22(1− p) |1〉〈1|.

Using α11 := α, α22 = 1− α, we get E(ρX) = [α(1− p) + (1− α)p] |0〉〈0|+ [αp+ (1− α)(1− p)] |1〉〈1|.
The channel ignores the off-diagonal terms of ρX : it acts as a measurement on the computational basis
followed by the classical binary symmetric channel.

d) Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y , defined by
the conditional probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.
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We generalize the previous result as

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|ρX |x〉〈y|

=
∑
x,y

Ex→yρXE
†x→ y, Ex→y =

√
PY |X=x(y) |y〉〈x|.

To see that this works, take a classical state ρX =
∑
x PX(x) |x〉〈x| as input,

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|
(∑

x′

PX(x′) |x′〉〈x′|
)
|x〉〈y|

=
∑
x,y

PY |X=x(y) PX(x) |y〉〈y|

=
∑
y

Py(y) |y〉〈y|.

Exercise 5.2 Different Quantum Channels

Consider two single-qubit Hilbert spaces HA and HB and a CPTP map

Ep : S(HA) 7→ S(HB)

ρ→ p
1

2
+ (1− p)ρ,

which is called depolarizing channel.

a) Find a Kraus representation for Ep.

For simplicity of notation, we denote the Pauli matrices by X,Y, Z.

Remembering that X2 = Y 2 = Z2 = 1, XY = −Y X = Z, Y Z = −ZY = X and ZX = −XZ = Y ,
you can verify that

1 =
1

2
(ρ+XρX + Y ρY + ZρZ).

From this follows the operator sum representation {Mx}x,

M1 =

√
1− 3p

4
1, M2 =

√
p

2
X, M3 =

√
p

2
Y, M4 =

√
p

2
Z.

b) What happens to the radius ~r when we apply Ep? What is the physical interpretation of this?

Using the result from part a) we have

E(ρ) =
p

2
1 + (1− p) ρ

=
1

2
(1 + (1− p) ~r · ~X)

Thus, points on a sphere with radius r are mapped to a smaller sphere with radius (1 − p)r — they
get more mixed in that sense. In particular, pure states will not remain pure during this CPM.

c) Find Kraus representations for the following qubit channels
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(i) The dephasing channel: ρ → ρ′ = E(ρ) = (1 − p)ρ + p diag(ρ00, ρ11) (the off-diagonal elements
are annihiliated with probability p).

The dephased output is the same as measuring the state in the standard basis: diag(ρ00, ρ11) =∑1
j=0 PjρPj for Pj = |j〉〈j|. Thus possible Kraus operators are A2 =

√
1− p1, Aj =

√
pPj ,

j = 0, 1. But we can find a representation with fewer Kraus operators. Notice that σzρσz =(
ρ00 −ρ01
−ρ10 ρ11

)
. Thus (ρ+σzρσz)/2 = diag(ρ00, ρ11) and ρ′ =

∑1
j=0AjρA

†
j for A0 =

√
1− p/21

and A1 =
√
p/2σz.

(ii) The amplitude damping (damplitude) channel, defined by the action |00〉 → |00〉, |10〉 →
√

1− p|10〉+√
p|01〉 .

From the unitary action we can read off the Kraus operators since U |ψ〉|0〉 =
∑
k Ak|ψ〉|k〉.

Therefore A0 =

(
1 0
0
√

1− p

)
and A1 =

(
0
√
p

0 0

)
.

Exercise 5.3 The Choi Isomorphism

Consider the family of mappings between operators on two-dimensional Hilbert spaces

Eα : ρ 7→ (1− α)
12

2
+ α

(12

2
+ σxρσz + σzρσx

)
, 0 ≤ α ≤ 1, (1)

where {σi}i are Pauli matrices.

a) Use the Bloch representation to determine for what range of α these mappings are positive. What
happens to the Bloch sphere?

The two-dimensional state space S(H2) is isomorphic to the unit sphere on R3:

ρ =
1

2

(
1 + z x− iy
x+ iy 1− z

)
, x2 + y2 + z2 ≤ 1.

We apply the map to this state and get

ρ′ =
1

2

(
1 + 2αx 2αz

2αz 1− 2αx

)
.

The mapping is trace-preserving, hence it is positive if and only if the determinant of ρ′ is positive for
all allowed values of x, y and z. The determinant is given by

det(ρ′) =
1

4
(1− 4α2x2 − 4α2z2)

≥ 1

4
− α2.

The map is positive for 0 ≤ α ≤ 1
2 .

b) Calculate the analogs of these mappings in state space by applying the mappings to the fully entangled
state as follows:

σα = (Eα ⊗ I)
[
|Ψ〉〈Ψ|

]
, |Ψ〉 =

1√
2

(|00〉+ |11〉). (2)

For what range of α is the mapping a CPM?

We need to find an expression for E ⊗ I(|Ψ〉〈Ψ|AR). Let us see how we can extend a TPCPM on
composite systems. Suppose we have a TPCPM described by

E(ρA) =
∑
i

XiρAYi.
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Note that this is not the operator-sum representation, as Yi is not necessarily Xi
†.

When we apply the composed map to a product of matrices of the form M ⊗N (not necessarily a valid
quantum state), we have

[E ⊗ I](M ⊗N) = [E(M)]⊗ [I(N)]

=

[∑
i

XiMYi

]
⊗ [1N1]

=
∑
i

[Xi ⊗ 1]M ⊗N [Yi ⊗ 1] .

But any density operator can be written as ρAR =
∑
m,n αmnMm ⊗Nn and TPCMs are linear maps,

so

[E ⊗ I](ρAR) = [E ⊗ I]

(∑
m,n

αmnMm ⊗Nn

)
=
∑
m,n

αmn[E ⊗ I] (Mm ⊗Nn)

=
∑
m,n

αmn

(∑
i

[Xi ⊗ 1]Mm ⊗Nn [Yi ⊗ 1]

)

=
∑
i

[Xi ⊗ 1]

(∑
m,n

αmnMm ⊗Nn

)
[Yi ⊗ 1]

=
∑
i

[Xi ⊗ 1] ρAR [Yi ⊗ 1]

In the case of this particular map, we have

Eα(ρA) = (1− α)
12

2
+ α

(12

2
+ σxρAσz + σzρAσx

)
=
12

2
+ α

(
σxρAσz + σzρAσx

)
=

1

4

(
12ρA12 + σxρAσy + σyρAσy + σzρAσz

)
+ α

(
σxρAσz + σzρAσx

)
Eα ⊗ I(ρAR) =

1

4

(
14ρAR14 + [σx ⊗ 12]ρAR[σy ⊗ 12] + [σy ⊗ 12]ρAR[σy ⊗ 12] + [σz ⊗ 12]ρAR[σz ⊗ 12]

)
+ α

(
[σx ⊗ 12]ρAR[σz ⊗ 12] + [σz ⊗ 12]ρAR[σx ⊗ 12]

)
,

with

σx ⊗ 12 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , σy ⊗ 12 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , σz ⊗ 12 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

in the computational basis. When we apply this map to the fully entangled state we get

|Ψ〉〈Ψ| = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , Eα ⊗ I(|Ψ〉〈Ψ|) =
1

4


1 2α 2α 0

2α 1 0 −2α
2α 0 1 −2α
0 −2α −2α 1

 .
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We know that because of the way the Choi isomorphism is designed, a map E is completely positive if
and only if the matrix E ⊗ I (|Ψ〉〈Ψ|) is non negative. In this case, the eigenvalues of that matrix are

λ1α =
1

4
− α, λ2α = λ3α =

1

4
, λ4α =

1

4
+ α,

so we conclude that the map Eα is completely positive for 0 ≤ α ≤ 1
4 .

c) Find an operator-sum representation of Eα for α = 1/4.

Note: In this solution we use results from pages 42–45 of the script. However, we adopted a slightly
different notation. Our reference system R, that is a copy of A, is called A′ in the script, and our
purifying system P is labeled R there. Also, in the script it is considered the extension I ⊗ E , while
we have E ⊗ I.

The Stinespring dilation tells us that for any TPCPM EA→B from a system A to a system B, there is
a system P where one can find an isometry U from A to B ⊗ P that satisfies

EA→B : ρA 7→ TrP (UA→BP ρA U∗A→BP ).

If we know how to find U , it comes in a very nice form, such that it is direct to obtain the operator-sum
representation of E by tracing out system P . It takes four steps to find the operator-sum representation
of E :

1. We apply the Choi-Jamiolkowski isomorphism (CJI) on the map,

τ : EA→B 7→ [EA→B ⊗ IR→R] (|Ψ〉〈Ψ|AR) =: σBR,

obtaining a density matrix σBR, where R is a copy of A — the correspondent Hilbert spaces,
HA and HR, have equivalent bases,

{
|i〉A/R

}
i
.

2. We purify σBR using an auxiliar system P ,

|Φ〉BRP : TrP (|Φ〉〈Φ|) = σBR.

3. We apply the inverse of the CJI on |Φ〉, and obtain a very special map,

τ−1(|Φ〉〈Φ|BRP ) = UA→BP : ρA → UA→BP ρA U∗A→BP ,

where U is an isometry.

4. We trace out the purifying system P and recover E , in the operator-sum representation,

TrP (UA→BP ) = EA→B .

Let us now apply this protocol to our map. We had

Eα ⊗ I (|Ψ〉〈Ψ|) =
1

4


1 2α 2α 0

2α 1 0 −2α
2α 0 1 −2α
0 −2α −2α 1

 .

This matrix has eigenvalues and eigenvectors

λ1α =
1

4
− α, λ2α =

1

4
, λ2α =

1

4
, λ4α =

1

4
+ α,

|v1〉 =
1

2


−1

1
1
1

 , |v2〉 =
1√
2


0
−1

1
0

 , |v3〉 =
1√
2


1
0
0
1

 , |v4〉 =
1

2


−1
−1
−1

1

 .

6



The eigenvectors do not depend on α, and their Schimdt decompositions are all of the form

|vi〉 =
1√
2

(
|bk0〉 ⊗ |0〉R + |bk1〉 ⊗ |1〉R

)
,

with

|b10〉 =
1√
2

(
− |0〉+ |1〉

)
, |b20〉 = −|1〉, |b30〉 = |0〉, |b40〉 =

1√
2

(
− |0〉 − |1〉

)
,

|b11〉 =
1√
2

(
|0〉+ |1〉

)
, |b21〉 = |0〉, |b31〉 = |1〉, |b41〉 =

1√
2

(
− |0〉+ |1〉

)
.

This gives us

Ekα =
√

2 λk
∑
`

1√
2
|bk` 〉B〈rk` |A

=
√
λkα

(
|bk0〉〈0|+ |bk1〉〈1|

)
=
√
λkα M

k,

for Eα(ρA) =
∑
k λ

kMkρAM
k∗. The matrices Mk are

M1 =
1√
2

(
−1 1
1 1

)
, M2 =

(
0 1
−1 0

)
, M3 =

(
1 0
0 1

)
, M4 =

1√
2

(
−1 −1
−1 1

)
.
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