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Exercise 2.1 Bloch sphere

In this exercise we will see how we may represent qubit states as points in a three-dimensional
unit ball.
A qubit is a two level system, whose Hilbert space is equivalent to C2. The Pauli matrices
together with the identity form a basis for 2× 2 Hermitian matrices,

B =

{
σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,1 =

(
1 0
0 1

)}
, (1)

where the matrices are represented in basis {|0〉, |1〉}.
We will see that density operators can always be expressed as

ρ =
1

2
(1 + ~r · ~σ) (2)

where ~σ = (σx, σy, σz) and ~r = (rx, ry, rz), |~r| ≤ 1 is the so-called Bloch vector, that gives us
the position of a point in an unit ball. The surface of that ball is usually known as the Bloch
sphere.

a) Show that the Pauli matrices respect following commutation relations:

[σi, σj ] := σiσj − σjσi = 2εijkσk, (3)

{σi, σj} := σiσj + σjσi = 2δij1. (4)

This is trivially obtained using linear algebra and applying the definitions of the Pauli
matrices.

b) Show that the operator ρ defined in (2) is a valid density operator for any vector ~r with
|~r| ≤ 1 by proving it fulfills the following properties:

1) Hermiticity: ρ = ρ†.

All Pauli matrices are Hermitian and the vector ~r is real, so the result comes from
direct application of (2).

2) Positivity: ρ ≥ 0. First we will show that a density matrix is positive if and only if
it self-adjoint has non-negative eigenvalues.

⇒: If ρ is positive, this means that for any |ψ〉 ∈ H, 〈ψ, ρψ〉 ≥ 0. Hence 〈ψ, ρψ〉 is
also real. So we have that:

〈ψ, ρψ〉 = 〈ρψ, ψ〉 = 〈ψ, ρ∗ψ〉

Now using this equality and the polarisation identity

〈ψ, φ〉 =
3∑

k=0

i−k〈ψ + ikφ, φ+ ikψ〉

we have that 〈ψ, ρφ〉 = 〈ρψ, φ〉, for any ψ and φ, hence ρ is self-adjoint.
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To show that eigenvalues must be non-negative, we look at a normalised eigenvector
ψ of ρ s.t. ρψ = λψ. Then

〈ψ, ρψ〉 = 〈ψ, λψ〉 = λ |ψ|2 ≥ 0

using the definition of the positivity of ρ. Hence this holds for each eigenvalue, and
all of them must be non-negative.

⇐: Now assume ρ is self-adjoint and has non-negative eigenvalues. Choose an
orthonormal basis φj of eigenvectors, i.e. ρφj = λjφj . Any vector φ ∈ H, we can
expand as φ =

∑
j cjφj , for some coefficients cj . Hence

〈φ, ρφ〉 =∑
j,k

cjck〈φj , ρφk〉 =

∑
j,k

cjck〈φj , λkφk〉 =

∑
j,k

cjckλk〈φj , φk〉 =

∑
j

|cj |2 λj ≥ 0

(5)

So ρ is positive operator. With this we end the proof. Hence, as we know that ρ is
self-adjoint, for positivity it remains to prove that it has non-negative eigenvalues.

The general form of a state given by (2) is

ρ =
1

2

(
1 + rz rx − iry
rx + iry 1− rz

)
⇒ Eigenvalues:

{
1− |~r|

2
,
1 + |~r|

2

}
. (6)

Since 0 ≤ |~r| ≤ 1, the eigenvalues are non-negative. From previous part we also
know that ρ is self-adjoint. Hence ρ is a positive matrix (operator).

3) Normalisation: Tr(ρ) = 1.

From (6) we have that

Tr(ρ) =
1− |~r|

2
+

1 + |~r|
2

= 1.

c) Now do the converse: show that any two-level density operator may be written as (2).

We show this in a matrix formalism.

We represent ρ as 2× 2 matrix, and as we know that it is self-adjoint, we can write it as:

ρ =

(
α β
γ δ

)
with α and δ real, and β = γ, α+ δ = 1 for unit trace. If we introduce α = 1

2(1 + r3), δ =
1
2(1 − r3), γ = 1

2(r1 + ir2), we have ρ = 1
2(1 + ~r · ~σ). Now ρ also has to have non-

negative eigenvalues (since it is a positive operator), hence det(ρ) must be non-negative
⇒ 1− |~r|2 ≥ 0⇒ |~r|2 ≤ 1.
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d) Check that the surface of the ball — the Bloch sphere — is formed by all the pure states.

If ρ defines a pure state then ρ = |ψ〉〈ψ| for some vector ψ. Hence ρψ = ψ and ρφ = 0
for φ orthogonal to ψ (φ and ψ are eigenvectors of ρ). Hence eigenvalues are 1 and 0, so
det(ρ) = 0 and we have |~r| = 1.

e) Find and draw in the ball the Bloch vectors of a fully mixed state and the pure states that
form three bases, {| ↑〉, | ↓〉}, {|+〉, |−〉} and {| 	〉, | �〉}. Hint: Use |±〉 = (|0〉 ± |1〉)/

√
2

and | 	 / �〉 = (|0〉 ± i|1〉)/
√

2.

state density matrix Bloch vector in the figure

1

2
1
2

(
1 0
0 1

)
(0, 0, 0) green

|0〉 1
2

(
2 0
0 0

)
(0, 0, 1) red

|1〉 1
2

(
0 0
0 2

)
(0, 0,−1) red

|+〉 1
2

(
1 1
1 1

)
(1, 0, 0) yellow

|−〉 1
2

(
1 −1
−1 1

)
(−1, 0, 0) yellow

|�〉 1
2

(
1 −i
i 1

)
(0, 1, 0) blue: |R〉

|	〉 1
2

(
1 i
−i 1

)
(0,−1, 0) blue: |L〉

id
2

x

y

z

-

+

L
R

f) Find and diagonalise the states represented by Bloch vectors ~r1 = (12 , 0, 0) and ~r2 =
( 1√

2
, 0, 1√

2
).

We have

ρ1 =
1

2

[
1 +

(
1

2
, 0, 0

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1

2

(
0 1
1 0

)]
=

1

4

(
2 1
1 2

)
⇒ Eigenvalues:

{
1

4
,
3

4

}
,

ρ2 =
1

2

[
1 +

(
1√
2
, 0,

1√
2

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1√
2

(
0 1
1 0

)
+

1√
2

(
1 0
0 −1

)]
=

1

2
√

2

( √
2 + 1 1

1
√

2− 1

)
⇒ Eigenvalues: {0, 1} .
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The first Bloch vector lies inside the ball (|~r1 = 1
4 |), and the state that it represents is

mixed. The Bloch vector of the second state is on the surface of the sphere, and that state
is pure.

Exercise 2.2 The Hadamard Gate

An important qubit transformation in quantum information theory is the Hadamard gate. In
the basis of σẑ, it takes the form

H = 1√
2

(
1 1
1 −1

)
. (7)

That is to say, if |0〉 and |1〉 are the σẑ eigenstates, corresponding to eigenvalues +1 and −1,
respectively, then

H = 1√
2

(|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|) (8)

1. Show that H is unitary.

A matrix U is unitary when U †U = 1. In fact, H† = H, so we just need to verify that
H2 = 1, which is the case.

2. What are the eigenvalues and eigenvectors of H?

Since H2 = 1, its eigenvalues must be ±1. If both eigenvalues were equal, it would be
proportional to the identity matrix. Thus, one eigenvalue is +1 and the other −1. By
direct calculation we can find that the (normalized) eigenvectors are

|λ±〉 = ±
√

2±
√

2

2
|0〉+

1√
2(2±

√
2)
|1〉 (9)

3. What form does H take in the basis of σx̂? σŷ?

The eigenbasis of σx̂ is formed by the two states |x̂±〉 = 1√
2
(|0〉 ± |1〉). From the form of

H given in (8), it is clear that we can express H as

H = |x̂+〉〈0|+ |x̂−〉〈1| or (10)

H = |0〉〈x̂+|+ |1〉〈x̂−| (11)

The latter form follows immediately from the first since H† = H. Finally, we can express
the σẑ basis |0/1〉 in terms of the σx̂ basis as |0〉 = 1√

2
(|x̂+〉+ |x̂−〉) and |1〉 = 1√

2
(|x̂+〉 −

|x̂−〉). Thus, if we replace |0〉 and |1〉 by these expressions in the equation for H we find

H = |0〉〈x̂+|+ |1〉〈x̂−| = 1√
2

(|x̂+〉〈x̂+|+ |x̂−〉〈x̂+|+ |x̂+〉〈x̂−| − |x̂−〉〈x̂−|) . (12)

Evidently, H has exactly the same representation in the σx̂ basis! In retrospect, we
should have anticipated this immediately once we noticed that H interchanges the σẑ and
σx̂ bases.

For σŷ, we can proceed differently. What is the action of H on the σŷ eigenstates? These
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are |ŷ±〉 = 1√
2
(|0〉 ± i|1〉). Thus,

H|ŷ±〉 = 1√
2

(H|0〉 ± iH|1〉) (13)

= 1
2 (|0〉+ |1〉 ± i|0〉 ∓ i|1〉) (14)

=

(
1± i

2

)
|0〉+

(
1∓ i

2

)
|1〉 (15)

= 1√
2
ei±

π
4

(
|0〉+

(
1∓ i
1± i

)
|1〉
)

(16)

= 1√
2
ei±

π
4 (|0〉 ∓ i|1〉) (17)

= ei±
π
4 |ŷ∓〉 (18)

Therefore, the Hadamard operation just swaps the two states in the basis (note that if
we used a different phase convention for defining the σŷ eigenstates, there would be extra

phase factors in this equation). So, H =

(
0 e−i

π
4

ei
π
4 0

)
in this basis.

4. Give a geometric interpretation of the action of H in terms of the Bloch sphere.

All unitary operators on a qubit are rotations of the Bloch sphere by some angle about
some axis. Since H2 = 1, it must be a π rotation. Because the ŷ-axis is interchanged
under H, the axis must lie somewhere in the x̂-ẑ plane. Finally, since H interchanges the
σx̂ and σẑ bases, it must be a rotation about the m̂ = 1√

2
(x̂+ ẑ) axis.

Easier way to see this, is by observing that H = 1√
2
(σx +σz). As Pauli matrices represent

rotations for an angle π around the suitable axis (σx around x-axis etc.), with some help
of geometry and algebra we can see that H represents a π rotation (as H2 = 1) around
the axis 1√

2
(x̂+ ẑ).
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