Swiss Federal Institute of Technology Zurich

Exercise 6.1 Classical capacity of the depolarizing channel

Consider the depolarizing channel we have treated before, that is described by the CPTP map:

$$E_p: \mathcal{S}(\mathcal{H}_A) \mapsto \mathcal{S}(\mathcal{H}_B)$$

$$\rho \to p\frac{1}{2} + (1-p)\rho.$$

a) Now we will see what happens when we use this quantum channel to send classical information. We start with an arbitrary input probability distribution $P_X(0) = q$, $P_X(1) = 1 - q$. We encode this distribution in a state $\rho_X = q |0\rangle\langle 0| + (1-q)|1\rangle\langle 1|$. Now we send ρ_X over the quantum channel, i.e., we let it evolve under $E_{\mathbf{p}}$. Finally, we measure the output state, $\rho_Y = E_{\mathbf{p}}(\rho_X)$ in the computational basis.

Compute the conditional probabilities $\{P_{Y|X=x}(y)\}_{xy}$.

- b) Maximize the mutual information over q to find the classical channel capacity of the depolarizing channel.
- c) What happens to the channel capacity if we measure the final state in a different basis?

Exercise 6.2 A sufficient entanglement criterion

In general it is very hard to determine if a state is entangled or not. In this exercise we will construct a simple entanglement criterion that works fine at least in low dimensions.

- a) Show that the *transpose* is a positive operation, and that it is basis-dependent.
- b) Let $\rho \in End(\mathcal{H}_A \otimes \mathcal{H}_B)$ be a separable state, and let Λ_A be a positive operator on \mathcal{H}_A . Show that $\Lambda_A \otimes \mathbb{1}_B$ maps ρ to a positive operator.

The task of characterizing the sets of separable states then reduces to finding a suitable positive map that distinguishes between separable and entangled states.

c) Show that the *transpose* is a probable candidate by testing it on a Werner state (impure singlet)

$$W = x |\psi^{-}\rangle \langle \psi^{-}| + (1-x) \mathbb{1}/4,$$

where $x \in [0,1]$ and $|\psi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$. What happens to the eigenvalues of W when you apply $transpose \otimes \mathbbm{1}_B$?

Remark: Indeed, it can be shown that the PPT (positive partial transpose) criterion is necessary and sufficient for systems of dimension 2×2 and 2×3 .

d) Show that although the partial transpose is basis-dependent, the corresponding eigenvalues are independent under local basis-transformations.

Exercise 6.3 Uncertainty Principle

Let ρ be a density operator, A and B observables, and $t \in \mathbb{R}$. Show that

- $(A+itB)\rho(A+itB)^*$ is positive (Alternatively, show directly that $\langle (A+itB)(A+itB)^* \rangle$ is positive)
- $4\langle A^2 \rangle_{\rho} \langle B^2 \rangle_{\rho} \ge |\langle [A, B] \rangle_{\rho}|^2$

Hence deduce the Uncertainty Principle $\Delta_{\rho}[P]^2 \Delta_{\rho}[X]^2 \geq \frac{1}{4}\hbar^2$.

Exercise 6.4 Stinespring Isometry

(Extra question) Show the existence of the Stinespring isometry directly from the Choi state.