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Exercise 10.1 Fidelity and Uhlmann’s Theorem
Given two states p and o on H 4 with fixed basis {|A);}; and a reference Hilbert space Hp with fixed
basis {|B);}:, which is a copy of H 4, Uhlmann’s theorem claims that the fidelity can be written as

F(p,0)= max, (¥l (1)

where the maximum is over all purifications |¢)) of p and |¢) of 0 on Hx @ Hp. Let us introduce a state
1) as:
)= (VpeUs) ), )= l4:i®|B), (2)

where Ug is any unitary on Hpg.

a) Show that [¢) is a purification of p.
b) Argue why every purification of p can be written in this form.

¢) Use the construction presented in the proof of Uhlmann’s theorem to calculate the fidelity between
o' = 15/2 and p’ = p|0)(0] + (1 — p)|1)(1| in the 2-dimensional Hilbert space with computational
basis.

d) Give an expression for the fidelity between any pure state and the completely mixed state 1,,/n in

the n-dimensional Hilbert space.

Exercise 10.2 Classical Stein lemma

The aim of this exercise is to prove the classical version of the Chernoff-Stein Lemma.
We first define few notions we will need.
For a fixed n and € > 0, a sequence (x1,...,x,) € X™ is said to be relative entropy typical if and only if:

Pl(l‘l, ,l‘n)

1
D(P||Py) —e < —1 D(Py|| P
(P1]|P2) Rl X oy (Pr1||P2) + €

The set of relative entropy typical sequences is called the relative entropy typical set A (P1 [|Ps).
Now prove the following (use the first statement to prove the others):

e (AEP for relative entropy) Let X1, ..., X,, be a sequence of RV drown i.i.d. according to P;(x), and
let Py(x) be any other distribution on X. Then

Py (X1, ..., Xn)
71 “Leben2nl L pip||P
ng(Xl,...,X )~ PRIF)
in probability.
o For (z1,2s,....x,) € A" (Py||Py),

Pl((ﬁl, ..,$n)2_n(D(P1HP2)+€) S P2($1, ..,l‘n) S Pl((ﬁl, ”’xn)2—n(D(P1HP2)—e)

o Pi(AZ(P1]|P2)) > 1 — e, for sufficiently large n.
o Py(A(Py||Py)) < 27 MDP(Pi][P2)=€)
o Py(AP(P1]|Py)) > (1 — e)2 P(RrlIP2)F0)

Now let Xy, ..., X,, be i.i.d ~ @. Consider the hypothesis test between two alternatives, = P; and
Q = Py, where D(Py||P2) < oo. Let A, € X™ be an acceptance region for hypothesis H;. Let the

probabilities of error be
an = P"(A}), Bn = P3'(An)



Prove that for any 0 < € < %

lim ~log < —(D(P[|Py) — )

n—o00 N

In particular, no other sequence of sets B,, can do better than A,,, i.e.:

1
lim —logf;, = —D(Py||P2)

n—o00 N

where 55 = ming, cxn,a, <e Fn-
Exercise 10.3 Resource inequalities
Show that following inequality can hold:
Bla — ql + alaq] = 2[c — (]

only ifa+ 5 > 2
Hint: Use Holevo’s bound.



