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Exercise 1. Low-energy pion scattering

In this exercise we look at pion scattering in the non-linear o-model. The effective Lagrangian
for the pion sector is given by

/
L= D, D= B, DD, D)~ B, B+ DY)~ M

The dots indicate higher order effective operators and DH is the covariant derivative given by
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where the constant F' is the pion decay amplitude and @ = (71, ..., m4) are the pion fields.

We look here at the 4—pion scattering 7, (p1)mp(p2) — me(p3)ma(ps) in the low—energy limit,
i.e the limit where the energy of the pions is much lower than F, and want to compute the
corresponding scattering amplitude as a series in 1/F2.
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(a) Show that in the limit where F' — oo the part of £, relevant to 4—pion scattering is given
by
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+ higher point interactions + O(F~%).

(b) The leading contribution to the amplitude is only given by the vertex (9,7 - O*7)72/F2.
By obtaining the Feynman rules, show that this contribution is

2 (0ab0cd(P1 - P2 + D3 - Pa) — OacObd(P1 - D3 + D2 - Pa) — Oadlbe(P1 - Pa + D2 -p3)).  (2)



At order F~*, we get loop contributions arising from the vertex (2) and contributions coming
from the terms proportional to ¢4 and ¢j. The corresponding diagrams read

o= 00X a2

(c) The loop integrals need to be regularised since they are ultra-violet divergent. Using a
cutoff A show that the bubble intergal reads
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in the A — oo limit.

(d) Show that the diagrams sum up to
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+ crossed terms,

where ‘crossed terms’ denotes terms given by interchanging the pions 2 <> 3 and 2 < 4,
and s, t, and u are the Mandelstam variables

s=(p1+p2)% t=m1-p3)%  u=(m—p)*

Finally, note that the ultra-violet divergences can be absorbed by renormalization of the con-

stants
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Hence, we see that even if we are working with an effective Lagrangian, it is possible to absorb
all divergences by including higher dimensional operators in (1), order by order.



