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Exercise 8.1 Classical channels as TPCPMs.

a) Take the binary symmetric channel p,

1 - p

1 - p

p
p

X Y

.

Recall that we can represent the probability distributions on both ends of the channel as quantum states
in a given basis: for instance, if PX(0) = q, PX(1) = 1 − q, we may express this as the 1-qubit mixed
state ρX = q |0〉〈0|+ (1− q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the computational
basis?

We have

PY (0) =
∑
x

PX(x)PY |X=x(0) = q(1− p) + (1− q)p

PY (1) = qp+ (1− q)(1− p),

which can be expressed as a quantum state ρy = [q(1−p)+(1−q)p] |0〉〈0|+[qp+(1−q)(1−p)] |1〉〈1| ∈
L(HY ).

b) Now we want to represent the channel as a map

Ep : S(HX) 7→ S(HY )

ρX → ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map E :
S(HX) → S(HY ) is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),

∑
k EkEk

† = 1, such
that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.

We take four operators, corresponding to the four different “branches” of the channel,

E0→0 =
√

1− p|0〉〈0|
E0→1 =

√
p|1〉〈0|

E1→0 =
√
p|0〉〈1|

E1→1 =
√

1− p|1〉〈1|.
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To check that this works for the classical state ρX , we do

E(ρX) =
∑
xy

Ex→y ρX E†
x→y

=
∑
xy

Ex→y

[
q|0〉〈0|+ (1− q)|1〉〈1|

]
E†

x→y

=(1− p) |0〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈0|

+ p |1〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈1|

+ p |0〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈0|

+ (1− p) |1〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈1|

=q(1− p) |0〉〈0|
+ qp |1〉〈1|
+ (1− q)p |0〉〈0|
+ (1− q)(1− p) |1〉〈1| = ρY .

c) Now we have a representation of the classical channel in terms of the evolution of a quantum state.
What happens if the initial state ρX is not diagonal in the computational basis?

In general, we can express the state in the computational basis as ρX =
∑

ij αij |i〉〈j|, with the usual
conditions (positivity, normalization). Applying the map gives us

E(ρX) =
∑
xy

Ex→y

[∑
ij

αij |i〉〈j|
]
E†

x→y

=(1− p) |0〉〈0|
[∑

ij

αij |i〉〈j|
]
|0〉〈0|

+ p |1〉〈0|
[∑

ij

αij |i〉〈j|
]
|0〉〈1|

+ p |0〉〈1|
[∑

ij

αij |i〉〈j|
]
|1〉〈0|

+ (1− p) |1〉〈1|
[∑

ij

αij |i〉〈j|
]
|1〉〈1|

=α11(1− p) |0〉〈0|+ α11p |1〉〈1|
+ α22p |0〉〈0|+ α22(1− p) |1〉〈1|.

Using α11 := α, α22 = 1− α, we get E(ρX) = [α(1− p) + (1− α)p] |0〉〈0|+ [αp+ (1− α)(1− p)] |1〉〈1|.
The channel ignores the off-diagonal terms of ρX : it acts as a measurement on the computational basis
followed by the classical binary symmetric channel.

d) Now consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y , defined by
the conditional probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.
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We generalize the previous result as

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|ρX |x〉〈y|

=
∑
x,y

Ex→yρXE
†x→ y, Ex→y =

√
PY |X=x(y) |y〉〈x|.

To see that this works, take a classical state ρX =
∑

x PX(x) |x〉〈x| as input,

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|
(∑

x′

PX(x′) |x′〉〈x′|
)
|x〉〈y|

=
∑
x,y

PY |X=x(y) PX(x) |y〉〈y|

=
∑
y

Py(y) |y〉〈y|.

Exercise 8.2 Different Quantum Channels

Consider two single-qubit Hilbert spaces HA and HB and a CPTP map

Ep : S(HA) 7→ S(HB)

ρ→ p
1

2
+ (1− p)ρ,

which is called depolarizing channel.

a) Find a Kraus representation for Ep.

For simplicity of notation, we denote the Pauli matrices by X,Y, Z.

Remembering that X2 = Y 2 = Z2 = 1, XY = −Y X = Z, Y Z = −ZY = X and ZX = −XZ = Y ,
you can verify that

1 =
1

2
(ρ+XρX + Y ρY + ZρZ).

From this follows the operator sum representation {Mx}x,

M1 =

√
1− 3p

4
1, M2 =

√
p

2
X, M3 =

√
p

2
Y, M4 =

√
p

2
Z.

b) What happens to the radius ~r when we apply Ep? What is the physical interpretation of this?

Using the result from part a) we have

E(ρ) =
p

2
1 + (1− p) ρ

=
1

2
(1 + (1− p) ~r · ~X)

Thus, points on a sphere with radius r are mapped to a smaller sphere with radius (1 − p)r — they
get more mixed in that sense. In particular, pure states will not remain pure during this CPM.

c) Find Kraus representations for the following qubit channels
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(i) The dephasing channel: ρ → ρ′ = E(ρ) = (1 − p)ρ + p diag(ρ00, ρ11) (the off-diagonal elements
are annihiliated with probability p).

The dephased output is the same as measuring the state in the standard basis: diag(ρ00, ρ11) =∑1
j=0 PjρPj for Pj = |j〉〈j|. Thus possible Kraus operators are A2 =

√
1− p1, Aj =

√
pPj ,

j = 0, 1. But we can find a representation with fewer Kraus operators. Notice that σzρσz =(
ρ00 −ρ01
−ρ10 ρ11

)
. Thus (ρ+σzρσz)/2 = diag(ρ00, ρ11) and ρ′ =

∑1
j=0AjρA

†
j for A0 =

√
1− p/21

and A1 =
√
p/2σz.

(ii) The amplitude damping (damplitude) channel, defined by the action |00〉 → |00〉, |10〉 →
√

1− p|10〉+√
p|01〉 .

From the unitary action we can read off the Kraus operators since U |ψ〉|0〉 =
∑

k Ak|ψ〉|k〉.

Therefore A0 =

(
1 0
0
√

1− p

)
and A1 =

(
0
√
p

0 0

)
.

Exercise 8.3 Classical capacity of the depolarizing channel

Consider the depolarizing channel we have treated in the exercise before that is described by the CPTP map

Ep : S(HA) 7→ S(HB)

ρ→ p
1

2
+ (1− p)ρ.

a) Now we will see what happens when we use this quantum channel to send classical information. We
start with an arbitrary input probability distribution PX(0) = q, PX(1) = 1 − q. We encode this
distribution in a state ρX = q |0〉〈0|+ (1− q)|1〉〈1|. Now we send ρX over the quantum channel, i.e.,
we let it evolve under Ep. Finally, we measure the output state, ρY = Ep(ρX) in the computational
basis. Compute the conditional probabilities

{
PY |X=x(y)

}
xy

.

Applying the map to this state results in

E(ρX) =
(p

2
+ (1− p)q

)
|0〉〈0|+

(p
2

+ (1− p)(1− q)
)
|1〉〈1|

= PY (0) |0〉〈0|+ PY (1) |1〉〈1|,

so PY (0) = p
2 + (1− p)q, PY (1) = p

2 + (1− p)(1− q). The conditional probabilities can be arranged in
a transition matrix (T )xy = PY |X=x(y) as follows:

T =

(
p
2 + (1− p) p

2
p
2

p
2 + (1− p)

)
=

(
1− p

2
p
2

p
2 1− p

2

)
.

We obtained the binary symmetric channel, with p′ = p/2.

b) Maximize the mutual information over q to find the classical channel capacity of the depolarizing
channel.

The channel capacity of the binary symmetric channel, as has been shown in a previous exercise, is
given by

C = 1−Hbin(p/2), Hbin(r) = − (r log r + (1− r) log(1− r)) , r ∈ [0, 1].

c) What happens to the channel capacity if we measure the final state in a different basis?

Take an arbitrary basis
{
|α〉, |α⊥〉

}
, where

|α〉 = cos(α)|0〉+ sin(α)|1〉, |α⊥〉 = cos
(
α+

π

2

)
|0〉+ sin

(
α+

π

2

)
|1〉 = − sinα|0〉+ cosα|1〉.
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q

1-q

1-p/2

p/2

1-p/2
p/2

c

1-c

1-c
c

E, measure (computational) measure (new basis) .

Figure 1: The result is a binary symmetric channel with p′ = 1− c− p/2 + pc.

Then

PY (α) = Tr [|α〉〈α| E(ρX)] = Tr

[(
cos2 α cosα sinα

cosα sinα sin2 α

)(
PY (0) 0

0 PY (1)

)]
= cos2(α)PY (0) + sin2(α)PY (1),

PY (α⊥) = Tr
[
|α⊥〉〈α⊥| E(ρX)

]
= Tr

[(
sin2 α − cosα sinα

− cosα sinα cos2 α

)(
PY (0) 0

0 PY (1)

)]
= sin2(α)PY (0) + cos2(α)PY (1).

We can see this result in the following way: take c = cos2(α). Then “ preparing q|0〉〈0|+ (1− q)|1〉〈1|,
applying Ep and measuring in basis

{
|α〉, |α⊥〉

}
” is equivalent to the concatenation of two binary

symmetric channels (Fig. 1).

The final probability distributions are the same if we apply Ep, measure in the computational basis,
and then measure again in the new basis. This holds because Ep does not change the eigenbasis of the
state, and is not necessarily true for a general TPCPM.

The capacity of the original channel is larger than the capacity of the concatenation of the two channels
(because adding another channel just adds more noise, a fact otherwise known as the data processing
inequality).
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