Prof. Manfred Sigrist

Exercise 1. Exact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable interacting models, the one-dimensional Ising model (Ising chain). Consider a chain of N+1 Ising-spins with free ends and nearest neighbor coupling -J (J>0 for ferromagnetic coupling)

$$\mathcal{H}_{N+1} = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1}, \quad \sigma_i = \pm 1. \tag{1}$$

In this exercise we will be interested in the thermodynamic limit of this system, i.e. we assume N to be very large.

- (a) Compute the partition function Z_{N+1} using a recursive procedure.
- (b) Find expressions for the free energy and entropy, as well as for the internal energy and heat capacity. Compare your results to the ideal paramagnet.
- (c) Calculate the magnetization density $m = \langle \sigma_j \rangle$ where the spin σ_j is far away from the ends. Which symmetries does the system exhibit? Interpret you result in terms of symmetry arguments.
- (d) Show that the spin correlation function $\Gamma_{ij} = \langle \sigma_i \sigma_j \rangle \langle \sigma_i \rangle \langle \sigma_j \rangle$ decays exponentially with increasing distance |j-i| on the scale of the so-called correlation length ξ , i.e. $\Gamma_{ij} \sim e^{-|j-i|/\xi}$. Show that $\xi = -[\log(\tanh \beta J)]^{-1}$ and interpret your result in the limit $T \to 0$.
- (e) Calculate the magnetic susceptibility in zero magnetic field using the fluctuation-dissipation relation of the form

$$\frac{\chi(T)}{N} = \frac{1}{k_{\rm B}T} \sum_{j=-N/2}^{N/2} \Gamma_{0j},\tag{2}$$

in the thermodynamic limit, $N \to \infty$. For simplicity we assume N to be even. Note that $\chi(T)$ is defined to be extensive, such that we obtain the intensive quantity by normalization with N.

(f) Approximate $1/\chi(T)$ up to first order in $2\beta J$ in the high-temperature limit $(\beta \to 0)$. Use this result to calculate the Weiss temperature Θ_W , which is defined by $1/\chi(\Theta_W) = 0$.