Quantenmechanik I. Übung 12.

HS 13 Abgabe: Di 17. Dezember 2013

1. Störung eines 2-Niveau-Systems

Betrachte den Hamiltonoperator

$$H = E_1 |1\rangle\langle 1| + E_2 |2\rangle\langle 2| + \frac{\lambda}{2} (|1\rangle\langle 2| + |2\rangle\langle 1|)$$

eines 2-Niveau-Systems mit orthonormierter Basis $\{|i\rangle\}_{i=1,2}$.

- i) Bestimme die Eigenwerte und die Eigenvektoren von H. Zeichne die Eigenwerte in Abhängigkeit von λ .
- ii) Bestimme die Eigenwerte von H in erster und zweiter Ordnung der Störungsrechnung in λ . Hinweis: Wann ist entartete Störungsrechnung erforderlich?
- iii) Vergleiche die Ergebnisse aus (i) und (ii).

2. Der Satz von Feynman-Hellmann

Sei H_{λ} eine Familie von Hamiltonoperatoren. Insbesondere hängen die Eigenvektoren ψ_{λ} und Eigenwerte E_{λ} von λ ab. Zeige, dass für einen einfachen Eigenwert gilt

$$\frac{dE_{\lambda}}{d\lambda} = \left\langle \psi_{\lambda} \middle| \frac{dH_{\lambda}}{d\lambda} \middle| \psi_{\lambda} \right\rangle, \tag{1}$$

wobei $\|\psi_{\lambda}\| = 1$. Welcher Bezug besteht zur Störungsrechnung?