HS 13

Abgabe: Di 29. Oktober 2013

1. Teilchen im Potentialtopf

Betrachte einen ein-dimensionalen, ∞ -tiefen Potentialtopf der Breite a, dargestellt als das Intervall $0 \le x \le a$. Die Energie eines Teilchens darin entspricht dem Hamiltonoperator H auf $\mathcal{H} = L^2([0, a])$:

$$H\psi = -\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2}$$
, $(\psi(0) = \psi(a) = 0)$,

wobei die Randbedingungen den Definitionsbereich des Operators festlegen.

Das Teilchen befinde sich im Eigenzustand tiefster Energie (Grundzustand) des Topfs der Breite a/2. Zu einer bestimmten Zeit werde die rechte Wand plötzlich von x = a/2 nach x = a verschoben.

i) Berechne die Wahrscheinlichkeit, dass danach das Teilchen im ersten angeregten Zustand, bzw. im Grundzustand des Potentialtopfs der Breite a ist.

Hinweis: Der Zustand ist unmittelbar nach der Verschiebung noch derselbe.

ii) Bleibt der Erwartungswert der Energie des Teilchens bei der plötzlichen Änderung erhalten? Berechne auch das Schwankungsquadrat der Energie.

2. Galilei-Transformation und Schrödinger-Gleichung

i) Unter einer Galilei-Transformation $O' \to O$ transformieren Ort und Impuls gemäss

$$\vec{x} = \vec{x}' + \vec{u}t , \qquad \vec{p} = \vec{p}' + m\vec{u} , \qquad (1)$$

wobei \vec{u} die Geschwindigkeit von O' bezüglich O ist. Die Transformation der Wellenfunktion kann wie folgt heuristisch gefunden werden: Bis auf eine noch zu bestimmende Phase $e^{i\alpha/\hbar}$ ist

$$e^{i\vec{p}'\cdot\vec{x}'/\hbar} \to e^{i\vec{p}\cdot(\vec{x}-\vec{u}t)/\hbar} \cdot e^{i\alpha/\hbar} = e^{i[(\vec{p}'+m\vec{u})\cdot(\vec{x}-\vec{u}t)+\alpha]/\hbar} . \tag{2}$$

Bestimme $\alpha = \alpha(\vec{u}, t)$ (unabhängig von \vec{p}) auf eine der folgenden Weisen:

- Falls die Galilei-Transformation (1) mit einer weiteren, $\vec{p}' = \vec{p}'' + m\vec{v}$, zusammengesetzt wird, so ist die resultierende Phase in $e^{i\vec{p}''\cdot\vec{x}''/\hbar} \to e^{i\phi/\hbar}e^{i\vec{p}\cdot\vec{x}/\hbar}$ dieselbe wie die der einen Transformation $\vec{p} = \vec{p}'' + m(\vec{v} + \vec{u})$.
- (s. Allgemeine Mechanik) Eine Funktion $S(\vec{p}', \vec{x}, t)$ erzeugt eine kanonische Transformation $(\vec{p}', \vec{x}') \to (\vec{p}, \vec{x})$, sofern die Auflösung der Gleichungen

$$\vec{x}' = \frac{\partial S}{\partial \vec{p}'}, \qquad \vec{p} = \frac{\partial S}{\partial \vec{x}}$$
 (3)

nach \vec{p}, \vec{x} möglich ist. Dabei ist $H' = H + (\partial S/\partial t)$. Beachte, dass $S_0 = \vec{p}' \cdot \vec{x}$ die Identität $\vec{x}' = \vec{x}, \ \vec{p}' = \vec{p}$ erzeugt. Fasse (2) auf als $e^{i\vec{p}' \cdot \vec{x}'/\hbar} \to e^{iS(\vec{p}', \vec{x}, t)/\hbar}$. Zeige, dass S die

Transformation (1) erzeugt und bestimme α derart, dass $S=S_0$ für $\vec{u}=0$ und allgemein $H'=\vec{p}'^2/2m$ für $H=\vec{p}^2/2m$.

Hinweis: Das Ergebnis ist $\alpha(\vec{u}, t) = m\vec{u}^2t/2$.

ii) Zeige, dass (2) auf ein Wellenpaket

$$\psi'(\vec{x}',t) = (2\pi\hbar)^{-3/2} \int \hat{\psi}'(\vec{p}',t) e^{i\vec{p}'\cdot\vec{x}'/\hbar} d^3p'$$

angewandt die quantenmechanische Galilei-Transformation

$$\psi(\vec{x},t) = \psi'(\vec{x} - \vec{u}t, t)e^{\frac{i}{\hbar}m(\vec{u}\cdot\vec{x} - \vec{u}^2t/2)}$$

liefert. Verifiziere schliesslich die diesbezügliche Invarianz der freien Schrödinger-Gleichung

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\Delta\psi :$$

 ψ ist eine Lösung, falls ψ' eine ist.

Hinweis: Die Lösung von Teil (ii) erfordert jene von Teil (i) nicht, sondern nur dessen Ergebnis.