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Exercise 5.1 Purification

Purification is explained in detail in the script (pages 32–33). In a nutshell, for every mixed state ρA ∈ HA,
it is possible to find a pure state |ψ〉 in a larger system HA⊗HB such that when we trace out the purification
system HB we recover the original state: ρA = TrB|ψ〉〈ψ|. Note the existence of a purifying space HB does
not tell us where to find it, or even if it represents any physical system!
In part a) we are given a formula for purification and have to check that it actually works. First step: any
density operator may be expanded in its eigenbasis (spectral decomposition, pages 26–27 of the script) as

ρA =
∑
x

λx|ax〉〈ax|.

We expand the operator like that and then build a pure state in HA ⊗HB as

|ψ〉 =
∑
x

√
λx|ax〉A ⊗ |bx〉B,

where {bx}x forms an orthonormal basis of HB. Note that this implies that the dimension of the purification
space HB is the same as the dimension of the original space HA. Here you only have to check that |ψ〉 is
indeed a purification of ρA, ie. that ρA = TrB|ψ〉〈ψ|.
In part b) you have to prove that any two purifications are equivalent up to an isometry on the purifying
system. For instance, both

|ψ〉AB =
1√
2

(
|0〉A|+〉B + |1〉A|−〉B

)
and |φ〉AC =

1√
2

(
|0〉A|000〉C + |1〉A|110〉C

)
purify the fully mixed state of A, ρA = 1A/2, even if B is a 1-qubit system while C is a 3-qubit system,
and even if the state is purified in different bases. But alas, these two states are related by an isometry on
the purifying system: |φ〉AC = (1A ⊗ UB 7→C)|ψ〉AB, where UB 7→C maps |+〉B to |000〉C and |−〉B to |110〉C .
To prove that this is always the case, write a Schmidt decomposition of the purified state, and see which
elements can be changed so that the state still purifies ρA.
Let us now approach part c) of the exercise. Suppose you want to create a certain mixed state ρ′. It is
relatively easy to create pure states because you know exactly what the state should be like—things like a
spin up or a bunch of photons with a certain polarisation—but mixed states are more tricky as they are
states about which we do not have full information, i.e. we are not sure about their exact states. One way
to do it is to diagonalise ρ′ =

∑
z αz|z〉〈z| and then get a machine that produces the pure state |z〉 with

probability αz. Of course you need to be sure that the machine is genuinely random and that you have no
access to the information “which state has been created”. The first condition in particular is hard to achieve
classically, and one may think that there has to be a neater way to do it, maybe using quantum mechanics.
Well, there is, and it involves purification.
The idea is that you prepare a special pure state in a bipartite system (easy) and then perform a measurement
in a part of that system (also easy). What is left is a mixed state in the other subsystem, and you know
which mixed state it is according to the result of your measurement. What we will now see is what pure
state and measurements we should prepare for a desired set of mixed states {ρxA}x.
The first step is to write down a mixed state that is a convex combination of {ρxA}x, ρA =

∑
x λxρ

x
A (ie. the

state ρA is decomposed in the possibly mixed states {ρxA}x). We will purify ρA, but instead of first mixing
the components {ρxA}x and then purify the resulting state ρA, we will do it the other way around, purifying
the components, then mixing the resulting pure states and finally purifying the state we get from there. We
will see that the two processes are equivalent.
We can decompose every ρxA ∈ HA in its eigenbasis

{
|axy〉

}
y

as ρxA =
∑

y α
x
y |axy〉〈axy | and then purify it as

usual using the extra Hilbert space HC ,

|φx〉 =
∑
y

√
αxy |axy〉A ⊗ |cxy〉C .
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We have now a set of pure states {|φx〉}x, and we will combine them to make a mixed state using the
coefficients {λx}x used to make ρA. The state we will obtain belongs to the composed space HA ⊗HC ,

ρAC =
∑
x

λx|φx〉〈φx|.

Now we purify this state using a purifying system HD,

|φ〉 =
∑
x

√
λx|φx〉AC ⊗ |dx〉D.

This state lives in HA⊗HC⊗HD and you will see that |φ〉 is a purification of ρA in system HB = HC⊗HD.
For this you have to check that TrB(|φ〉〈φ|) = ρA.
So now we have a pure state that is a purification of ρA. The next step is to choose a measurement in the
purifying system HB such that after measuring and tracing HB out we obtain a mixed state from the set
{ρxA}x, as we wanted. Remember what we saw last week about how measurements can be represented by a
set of operators out of which one is chosen at random? You may want to test the following measurements:

MB = {Mx
B = 1C ⊗ |dx〉〈dx|D}x .

In particular, check that ρxA =
TrB[|Φ〉〈Φ|(1A⊗Mx

B)]
λx

and λx = Tr [|Φ〉〈Φ|(1A ⊗Mx
B)] .

Summary of the mixed state recipe: you have a set of mixed states {ρxA}x you would like to create (or
alternatively you have one mixed state and you would like to obtain a certain decomposition). Mix the
states in a convex combination ρA with coefficients {λx}x. Go back to your initial set of states. Purify
them. Now mix the purified states just like you did with the mixed ones before. Purify that global mixed
state. Now apply a measurement in the purifying systems that measures the element of basis of this last
purifying system and acts as the identity in the first one. Trace out both the purifying systems (the state had
collapsed there anyway). Now with probability λx you measured |dx〉 in the last purifying system and are
left with ρxA. You always know which state you have because you know the outcome of your measurement.
Simple, right?

Exercise 5.2 Distinguishing two quantum states

This exercise is similar to the one where we knew the behaviour of two dice and after throwing one of them
we had to guess which one that was. The difference now is that we are dealing with quantum states with
density matrices instead of classical probability distributions. Back then our strategy was to choose the die
that was more likely to outcome the event we measured. Here we will do the same. However, we have to
decide in which basis to perform the measurement. In the case of two density matrices that share the same
eigenstates, this is easy – we can simply perform a measurement in that basis. Take the example of two
states given with equal probability,

ρ = 0.7 |0〉〈0|+ 0.3 |1〉〈1|, σ = 0.1 |0〉〈0|+ 0.9 |1〉〈1|.

The probability of measuring eg. |0〉 when looking at state ρ is given by Tr(|0〉〈0| ρ). We could perform a
measurement in their common eigenbasis {|0〉, |1〉}. If we obtained 0 we should guess we had measured state
ρ and vice-versa. Things get more complicated when the two states are not diagonalised in the same basis.
Consider for instance

ρ = 0.7 |0〉〈0|+ 0.3 |1〉〈1|, σ =
1

2
, τ = 0.7 |+〉〈+|+ 0.3. |−〉〈−|

Let us see what happens if we perform a measurement in three different bases. The probabilities of obtaining
the different outcomes for these states are
Even though {|+〉, |−〉} is an eigenbasis of σ, a measurement in this basis would not help distinguish σ from
ρ. A measurement in basis {| �〉, | 	〉} would be even worse: all three states have the same measurement
statistics in this basis. And although the statistics for σ and ρ are different in the computational basis, one
may wonder if there is a better choice of basis where they’re even more apart.
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outcome: |0〉 |1〉 |+〉 |−〉 | �〉 | 	〉
ρ 0.7 0.3 0.5 0.5 0.5 0.5

σ 0.5 0.5 0.5 0.5 0.5 0.5

τ 0.5 0.5 0.7 0.3 0.5 0.5

In general, we are looking for the measurement basis {|y〉}y that maximises our probability of sucessfully
distinguishing the two states. Depending on the outcome of the measurement, we will guess that we had
either ρ or σ. So we can define a set of all the measurement outcomes that will make us choose ρ: call this
set G, so that {y}y = G ∪ Ḡ.
Recall that the probability of obtaining outcome y when we measure ρ is Tr(|y〉〈y|ρ). Remember also that,
in this exercise, ρ was given to us with probability p, and σ with probability 1 − p. Our probability of
guessing correctly when we measure in basis {|y〉}y is

PrpX(ρ, σ) = Pr(state was ρ and we guess ρ) + Pr(state was σ and we guess σ)

= p Pr(we get one of the outcomes in G | we measure ρ)

+ (1− p) Pr(we get one of the outcomes in Ḡ | we measure σ)

= p
(∑
y∈G

Pr(we get outcome y | we measure ρ)
)

+ (1− p)
(∑
y∈Ḡ

Pr(we get outcome y | we measure ρ)
)

= p
(∑
y∈G

Tr(|y〉〈y|ρ)
)

+ (1− p)
(∑
y∈Ḡ

Tr(|y〉〈y|σ)
)
.

Show, using properties of the trace, that

PrpX(ρ, σ) = 1− p+ Tr
(
PG[p ρ− (1− p) σ]

)
, PG =

∑
y∈G
|y〉〈y|.

So now we want to choose the projector PG that maximises this quantity. For simplicity, call A = p ρ −
(1− p) σ. This is an operator (matrix) with positive and negative eigenvalues; for instance

A =


0.8 0 0 0
0 −0.7 0 0
0 0 0.2 0
0 0 0 −0.3


when diagonalised. The projector PG is a matrix that only has eigenvalues 0 and 1, e.g.,

PG =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

Show that, in order to maximise Tr(PGA), we should choose PG to be the projector onto the subspace that
corresponds to positive eigenvalues of A (like in the example above).
This solution corresponds to the following strategy. We measure our state (ρ or σ) in the eigenbasis of
A = p ρ − (1 − p) σ. If we the outcome corresponds to a positive eigenvalue of A (i.e. y ∈ G), then it is
more likely that we have measured ρ. If it corresponds to a negative eigenvalue of A (i.e. y ∈ Ḡ), we should
say that the state was σ.
In the particular case where the two density operators share the same eigenbasis this corresponds to following
the classical strategy after measuring the state in their common eigenbasis.
Also, when ρ and σ are given with equal probability, we recover the result Pr0.5

X (ρ, σ) = 1
2 [1 + δ(ρ, σ)], where

δ(ρ, σ) is the trace distance between the two operators (defined in the script).
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Exercise 5.3 Distance bounds

So far we have introduced two distance measures for quantum states: fidelity and trace distance. The
former has the nice property of being invariant under purifications, while the latter has an useful operational
meaning: it bounds the probability of distinguishing two quantum states. We can combine the two to obtain
funny results.
To solve this exercise, you should

1. think about the form of the purification of a product state (use the Schmidt decomposition);

2. use Uhlmann’s theorem (theorem 4.3.8, page 37 of the script);

3. get bounds for the trace distance in terms of fidelity (lemma 4.3.10 on page 40 of the script).

Why is this result useful? Well, in general it is easier to find a way of decoupling a system A from some
reference then to prove that A is maximally entangled with a different system A′, and one often needs
entanglement in quantum protocols. Using these bounds we only need to show the decoupling part to get
the maximum error probability of any experiment we can make on the hopefully-entangled state.
Two concrete examples are channel error estimation and work-extraction protocols. We can talk about
channels after introducing the Stinespring dilation, and about work extraction when you have time and
patience.
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