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Exercise 10.1 Upper bound on von Neumann entropy

Given a state ρ ∈ S(HA), show that
H(A)ρ ≤ log |HA|. (1)

There are several ways to do this. In this exercise, you should do it as follows.
Consider the state ρ̄ =

∫
UρU†dU , where the integral is over all unitaries U ∈ U(H) and dU is the Haar measure. Find

ρ̄ and show (1) using concavity:

H(A)ρ ≥
∑
z

pzH(A|Z = z). (2)

The Haar measure satisfies d(UV ) = d(V U) = dU , where V ∈ U(H) is a unitary.
We use the properties of the Haar measure to verify that ρ̄ commutes with all unitaries V on H:

V ρ̄V † =

∫
(V U)ρ(V U)† dU =

∫
Ũρ Ũ† d(V †Ũ) =

∫
Ũρ Ũ† dŨ = ρ̄.

The only density operator onH that has this property is the completely mixed state: suppose that ρ̄ had distinct eigenvalues
{λi}, and corresponding eigenvectors {|i〉}. Take V to be a unitary transformation that permutes the eigenvectors, for
instance V = |1〉〈2| + |2〉〈1|. Then we would have that V ρ̄V †|1〉 = λ2|1〉, while ρ̄|1〉 = λ1|1〉, so ρ 6= V ρV †. Since all the
eigenvalues of ρ̄ must be the same, and must be positive and sum up to one, we have that ρ̄ = 1/|H|
The concavity property of the von Neumann entropy (Eq. 2) naturally extends to integrals and we get

log |H| = H

(
1

|H|

)
= H(ρ̄) ≥

∫
H(UρU†) dU =

∫
H(ρ) dU (∗) = H(ρ)

∫
dU = H(ρ),

where (∗) stands because the entropy is independent of the basis.

Exercise 10.2 Quantum mutual information

One way of quantifying correlations between two systems A and B is through their mutual information, defined as

I(A : B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ (3)

= H(A)ρ −H(A|B)ρ. (4)

We can also define a conditional version of the mutual information between A and B as

I(A : B|C)ρ := H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ (5)

= H(A|C)ρ −H(A|BC)ρ. (6)

a) Consider two qubits A and B in a joint state ρAB.

1. Prove that the mutual information of the Bell state state , |Ψ+〉 = 1√
2

(|00〉+ |11〉), is maximal. This is why

we say Bell states are maximally entangled

The global state is pure and the reduced states on A and B are both fully mixed, ρA = ρB = 1/2, so we have

H(AB) = 0, H(A) = H(B) = 1 ⇒ I(A : B) = 2,

which is maximal, because the entropy of a single qubit is at most log |HA| = 1, as we saw in exercise 9.1 above,
and the entropy of the joint state is always non negative.

2. Show that I(A : B) ≤ 1 for classically correlated states, ρAB = p|0〉〈0|A ⊗ σ0
B + (1 − p)|1〉〈1|A ⊗ σ1

B (where
0 ≤ p ≤ 1).

We can rewrite the mutual information as

I(A : B) = H(A)︸ ︷︷ ︸
≤1

−H(A|B)︸ ︷︷ ︸
≥0(∗)

≤ 1

where (∗) comes from Lemma 7.5.3 in the script.
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b) Consider the so-called cat state shared by four qubits, A⊗B ⊗ C ⊗D, that is defined as∣∣∣∣c〉
=

1√
2

(|0000〉+ |1111〉) . (7)

Check how the mutual information between qubits A and B changes with the knowledge of the remaining qubits,
namely:

1. I(A : B) = 1.

2. I(A : B|C) = 0.

3. I(A : B|CD) = 1.

How do you interpret these results for the mutual information of the cat state?

The reduced states of the system for k qubits (which are independent of the qubits traced out) have entropies
denoted by hk, given as follows:

ρ4 =

∣∣∣∣c〉〈
c
∣∣∣∣ ⇒ h4 = 0,

ρ3 =
1

2
(|000〉〈000|+ |111〉〈111|) ⇒ h3 = 1,

ρ2 =
1

2
(|00〉〈00|+ |11〉〈11|) ⇒ h2 = 1,

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|) ⇒ h1 = 1.

The mutual information between A and B given the knowledge of other qubits comes

I(A : B) = H(A) +H(B)−H(AB)

= h1 + h1 − h2 = 1,

I(A : B|C) = H(A|C) +H(B|C)−H(AB|C)

= H(AC)−H(C) +H(BC)−H(C)−H(ABC) +H(C)

= h2 − h1 + h2 − h1 − h3 + h1 = 0,

I(A : B|CD) = H(A|CD) +H(B|CD)−H(AB|CD)

= H(ACD)−H(CD) +H(BCD)−H(CD)−H(ABCD) +H(CD)

= h3 − h2 + h3 − h2 − h4 + h2 = 1.

These mutual information results can be interpreted as follows. I(A : B) = 1 means that upon getting system B,
the entropy of A decreases by 1. This makes sense, since A and B are classically correlated, i.e. ρAB is the quantum
representation of a classical probability distribution between A and B, where they share the same bit (either both
A and B are 0, or they are both 1).

I(A : B|C) = 0 means that if you have system C, the entropy of A does not decrease when you learn B. Again,
we have a classically correlated state, and so if you know C, you already know A, and therefore learning B doesn’t
decrease the entropy of A.

I(A : B|CD) = 1 means that if you have system CD, the entropy of A decreases by 1 when you learn B. Now we do
not have a classically correlated state, we have a maximally entangled state. If we did have a classically correlated
state (such as 1/2(|0000〉〈0000|+ |1111〉〈1111|)) then I(A : B|CD) = 1, as it was for I(A : B|C). Instead, we have
that ρACD is classically correlated, but ρABCD is entangled. This means that by getting access to B, while already
having CD, we now have an entangled state with A, whereas before, we did not. This is why the entropy decreases
upon learning B.

Exercise 10.3 Information measures bonanza

Take a system A in state ρ. Non-conditional quantum min- and max-entropies are given by

Hmin(A)ρ = − log max
λ∈EV(ρ)

λ, Hmax(A)ρ = log rank(ρ).

For instance, if ρA has eigenvalues EV (ρA) = {0.6, 0.2, 0.2, 0}, we have Hmin(A)ρ = − log 0.6 and Hmax(A)ρ = log 3.
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a) Show that if EV (ρ) ≺ EV (τ), then the entropy of ρ is larger than or equal to the entropy of τ , for the von Neumann,
min- and max-entropies.

For simplicity, we define again ~r = EV (ρ) and ~t = EV (τ), with the eivenvalues in decreasing order, and the

sum-vectors from the previous exercise, ~R : Rk =
∑k
i=1 ri. We have

~r ≺ ~t⇒ r1 ≤ t1 ⇔ Hmin(A)ρ ≥ Hmin(A)τ X

~R. ≤ ~T ∧Rn = Tn = 1⇒
∣∣∣{1’s in ~R

}∣∣∣ ≤ ∣∣∣{1’s in ~T
}∣∣∣⇔ |{0’s in ~r}| − 1 ≤

∣∣{0’s in ~t
}∣∣− 1

⇔ rank(ρ) ≥ rank(τ)⇔ Hmax(A)ρ ≥ Hmax(A)τ X

To prove that the same holds for the von Neumann entropy, we make use of its concavity, H(A)∑
k pkρk

≥
∑
k pkH(A)ρk .

If EV (ρ) ≺ EV (τ), we know that there exist {Uk, pk}k such that ρ =
∑
k pkUkτU

†
k (Corollary 5.3.3). The von Neu-

mann entropy for state ρ is

H(A)ρ = H(A)∑
k pkUkτU

†
k

≥
∑
k

pkH(A)UkτU
†
k

=
∑
k

pkH(A)τ (entropy is invariant under unitaries)

= H(A)τ .

b) Show that if the bipartite state |ψ〉AB can be transformed into |φ〉 via LOCC (without catalysts), then I(A : B)ψ ≥
I(A : B)φ.

Say τ = |ψ〉〈ψ|, ρ = |φ〉〈φ|. Because the global states are pure, H(AB)τ = H(AB)ρ = 0, H(A)τ = H(B)τ , and
H(A)ρ = H(B)ρ. If we can go from τ to ρ via LOCC (without catalysts), then EV (τA) ≺ EV (ρA) ⇒ H(A)τ ≥
H(A)ρ. We have

I(A : B)ψ = H(A)τ +H(B)τ −H(AB)τ = 2H(A)τ ≥ 2H(A)ρ = I(A : B)φ.
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