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Exercise 7.1 Distinguishing Channels

We have seen that TPCPMs may be used to define channels. Now let’s see how to quantify similarity between two channels.
Consider two TPCPMs E ,F : End(HA) 7→ End(HB).
A naive approach is to send the same state through each of the channels and see how similar the output states are,

d(E ,F) = max
ρA

δ(E(ρA),F(ρA)), (1)

where δ(ρ, σ) is the trace distance between states.
However, we may want to consider that ρA may be entangled with some other system, and therefore a channel that acts
locally may produce global changes on the total state (for instance break the entanglement). The stabilized distance takes
that into account:

d3(E ,F) = max
ρAR

δ(E ⊗ I(ρAR),F ⊗ I(ρAR)), (2)

where I is the identity map.

E F

Id Id

A

R R R R

AB B

AR ARE⊗ Id AR F⊗ Id AR

a) Show that in general d(E ,F) ≤ d3(E ,F).

First start with the definition of d�(E ,F):

max
ρAR

δ(E ⊗ I(ρAR),F ⊗ I(ρAR)) ≥ max
ρA⊗ρR

δ(E ⊗ I(ρA ⊗ ρR),F ⊗ I(ρA ⊗ ρR)) (3)

= max
ρA⊗ρR

1

2
TrAR |E ⊗ I(ρA ⊗ ρR)−F ⊗ I(ρA ⊗ ρR)| (4)

= max
ρA⊗ρR

1

2
TrAR |(E(ρA)−F(ρA))⊗ ρR)| (5)

= max
ρA

1

2
TrA |(E(ρA)−F(ρA))| (6)

= δ(E ,F) (7)

b) Compute and compare d(E ,F) and d3(E ,F), where E and F act on ρ as EA(ρA) = I(ρA) and FA(ρA) = IA
dA

.

First we calculate d(E ,F):

d(E ,F) = max
ρA

δ

(
ρA,

1A

dA

)
(8)

= max
ρA

1

2
Tr

∣∣∣∣1AdA − ρA
∣∣∣∣ . (9)

Note that 1/2Tr|1/dA − ρ| is the distance between ρ and the center of the Bloch sphere when dA = 2. From
Claim 4.4.12 in the script, the maximum occurs when ρA is a pure state. Therefore,

d(E ,F) =
1

2

(
1− 1

dA
+
dA − 1

dA

)
=
dA − 1

dA
.
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As for the diamond distance, we have

d3(E ,F) = max
ρAR

δ(I ⊗ I(ρAR),F ⊗ I(ρAR))

= max
ρAR

1

2
Tr

∣∣∣∣ρAR − 1A

dA
⊗ ρR

∣∣∣∣
First, it can be shown that a pure state will maximize this expression. Using the Schmidt decomposition ρAR =∑
ij γiγj |ii〉AR〈jj|, and writing d = dA we get

d3(E ,F) = max
ρAR

1

2
Tr

∣∣∣∣∣∣
∑
ij

γiγj |ii〉AR〈jj| −
1A

d
⊗
∑
k

γ2k|k〉R〈k|

∣∣∣∣∣∣

= max
ρAR

1

2
Tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



γ21
0

. . .

0
0

γ22
. . .

0
. . .

0
. . .

0
γ2d



− 1

d


1

1
. . .

1

⊗

γ21

γ22
. . .

γ2d



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= max
ρAR

1

2d
Tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



γ21(d− 1)
−γ22

. . .

−γ2d
−γ21

γ22(d− 1)
. . .

−γ2d
. . .

−γ21
. . .

−γ2d−1
γ2d(d− 1)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= max

ρAR

1

2d

(∑
i

γ2i (d− 1) + (d− 1)
∑
i

γ2i

)
=
d− 1

d

Therefore, the stabilized distance and the trace distance are the same in this case.

Exercise 7.2 Bell-type Experiment

Consider a 2-qubit Hilbert space HAB = HA ⊗HB with basis {|00〉, |01〉|10〉, |11〉} in the Bell-state

|ψ+〉 =
1√
2

(|0〉|0〉+ |1〉|1〉) . (10)

Two parties, called Alice and Bob, get half of the state |ψ+〉 so that Alice has system A, and Bob has system B. Alice
then performs a measurement Mα

A := {|α〉〈α|, |α〉⊥〈α|⊥}, with |α〉 := cos(α2 )|0〉+ sin(α2 )|1〉, on her part of the system.
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a) Find the description Bob would give to his partial state on B after he knows that Alice performed the measurement
Mα
A on A. What description would Alice give to ρB given that she knows what measurement outcome she received?

Let Pα = |α〉〈α| ⊗ 1B and Pα⊥ = |α⊥〉〈α⊥| ⊗ 1B .

We have

|α〉 = cos
α

2
|0〉+ sin

α

2
|1〉 |α〉〈α| =

(
cos2 α2 cos α2 sin α

2

cos α2 sin α
2 sin2 α

2

)

Pα =


cos2 α2 0 cos α2 sin α

2 0
0 cos2 α2 0 cos α2 sin α

2

cos α2 sin α
2 0 sin2 α

2 0
0 cos α2 sin α

2 0 sin2 α
2



|α⊥〉 = cos
(α

2
+
π

2

)
|0〉+ sin

(α
2

+
π

2

)
|1〉 |α⊥〉〈α⊥| =

(
cos2 α2 − cos α2 sin α

2

− cos α2 sin α
2 sin2 α

2

)
= − sin

α

2
|0〉+ cos

α

2
|1〉

Pα⊥ =


sin2 α

2 0 − cos α2 sin α
2 0

0 sin2 α
2 0 − cos α2 sin α

2
− cos α2 sin α

2 0 cos2 α2 0
0 − cos α2 sin α

2 0 cos2 α2

 ,

and the state shared by Alice and Bob is

|Ψ+〉〈Ψ+| = |00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|
2

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

The probability that Alice obtains outcome α is

PrA(α) = Tr
[
Pα|ψ+〉〈ψ+|

]
= Tr

1

2


cos2 α2 0 0 cos2 α2

cos α2 sin α
2 0 0 cos α2 sin α

2
cos α2 sin α

2 0 0 cos α2 sin α
2

sin2 α
2 0 0 sin2 α

2


 =

1

2

and the reduced state on Bob’s side after the measurement, from the point of view of Alice (who knows that the
outcome of her measurement was α) is

ρB|A=α = TrA

(
Pα|ψ+〉〈ψ+|

PrA(α)

)
= TrA


cos2 α2 0 0 cos2 α2

cos α2 sin α
2 0 0 cos α2 sin α

2
cos α2 sin α

2 0 0 cos α2 sin α
2

sin2 α
2 0 0 sin2 α

2

 =

(
cos2 α2 cos α2 sin α

2

cos α2 sin α
2 sin2 α

2

)
.

Similarly, for the the other outcome, α⊥, we have

PrA(α⊥) =
1

2
ρB|A=α⊥ =

(
sin2 α

2 − cos α2 sin α
2

− cos α2 sin α
2 cos2 α2

)
.

If Bob does not know that Alice performed a measurement, he sees his state as ρB = TrA|φ+〉〈φ+| = 1
21B . Imagine

now that Bob knows that Alice performed this measurement but does not know the outcome. All he know is that
he has state ρB|A=α if she got α and state ρB|A=α⊥ if she got α⊥,

ρB|A=? = PrA(α)ρB|A=α + PrA(α⊥)ρB|A=α⊥

=
1

2

(
cos2 α2 cos α2 sin α

2

cos α2 sin α
2 sin2 α

2

)
+

1

2

(
sin2 α

2 − cos α2 sin α
2

− cos α2 sin α
2 cos2 α2

)
=
1B

2
.

From Bob’s viewpoint, it is the same whether Alice does not measure her qubit or measures it but does not tell him
the outcome.
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b) If Bob does the measurement M0
B = {|0〉〈0|, |1〉〈1|} on B, what is the probability distribution for his outcomes, PrB?

How would Alice describe his probability distribution, PrB|A?

We can read the probability distribution of M0
B conditioned on A directly from our results in part a),

PrB|A=α(x) =

{
cos2 α2 , for x = 0

sin2 α
2 , for x = 1

For A = α⊥ the probabilities are interchanged. PB (not conditioned on A) is just the uniform distribution over 0, 1.

c) Explain how this subjective assignment of the scenarios at B does not contradict with the actual measurement
outcomes Bob will get after doing the measurement M0

B..

The qubit of system B is correlated to another system (A) and what we are looking at are the states (and probability
distributions) conditioned / not conditioned on an event on that system (measurement on A) that is itself random.
More detailed analysis in the tips.

d) Alice and Bob can choose two different bases each: α = 0, π2 for Alice (labelled bases 0 and 3) and α = π
4 ,

3π
4 for

Bob (1 and 3).

The joint probabilities PXY |ab(x, y) of them obtaining outcomes x and y when they measure A = a and B = b are
given by

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2 − ε ε 1
2 − ε ε

− ε 1
2 − ε ε 1

2 − ε

B=3
+ ε 1

2 − ε
1
2 − ε ε

− 1
2 − ε ε ε 1

2 − ε

with ε = 1
2 sin2(π/8) ≈ 0.07.

Compute

IN (PXY |AB) = P (X = Y |A = 0, B = 3) +
∑
|a−b|=1

P (X 6= Y |A = a,B = b).

IN (PXY |AB) =
∑

k=+,−

PXY |A=0,B=3(k, k) +
∑
|a−b|=1

PXY |A=a,B=b(k, k̄)


=
∑

red terms in the table = 8ε

e) Now we introduce a PR-box, which is a joint probability distribution that cannot be created by measurements on a
quantum state:

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2 0 1
2 0

− 0 1
2 0 1

2

B=3
+ 0 1

2
1
2 0

− 1
2 0 0 1

2

Show that the PR-box

(i) is non-signalling: P (X|a, b1) = P (X|a, b2),∀a;

PX|A=a,B=1(x) = PX|A=a,B=3(x), ∀a, x⇔

⇔
∑
y

PXY |A=a,B=1(x, y) =
∑
y

PX|A=a,B=3(x, y), ∀a, x⇔

⇔
∑

red terms =
∑

orange terms, ∀ columns⇔

⇔ 1

2
=

1

2
X
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The other non-signalling condition, P (Y |a1, b) = P (Y |a2, b),∀b, can be checked similarly, summing over rows
instead of columns.

(ii) is non-local: PXY |ab 6= PX|aPY |b;

Any local distribution is a convex combination of deterministic local distributions,

v

There are only 16 non-signalling deterministic local distributions:

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

,

1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0

,

1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0

,

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

, etc.

The However, if we try to decompose the PR-box in this way we obtain:
1
2 0 1

2 0
0 1

2 0 1
2

0 1
2

1
2 0

1
2 0 0 1

2

= 1
2

1 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

+ 1
2

1 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

PXY |A=a,B=b(x, y) 6= PX|A=a(x) PY |B=b(y), ∀a, b, x, y ⇔

⇔ PXY |A=a,B=b(x, y) 6=

∑
y′,b′

PXY |A=a,B=b′(x, y
′)

∑
x′,a′

PXY |A=a′,B=b(x
′, y)

 , ∀a, b, x, y ⇔
⇔ {table cell} 6=

[∑
{column of the cell}

] [∑
row of the cell

]
, ∀ cells⇔

⇔ 0 or
1

2
6=
[

1

2
+

1

2

] [
1

2
+

1

2

]
= 1 X

(iii) yields IN (PXY |AB) = 0.

Alice A =0 A =2
Bob + − + −

B=1
+ 1

2 0 1
2 0

− 0 1
2 0 1

2

B=3
+ 0 1

2
1
2 0

− 1
2 0 0 1

2

IN (PXY |AB) =
∑

red terms = 0

f) Consider now that Alice and Bob get their qubits and measurement devices from Eve. Eve will try to trick them
into thinking that they share a singlet and perform quantum measurements. In fact, she will give them a device that
allows her to guess the results of their “measurements” with some probability.

Eve is a post-quantum adversary, limited only by non-signaling. She will give them:

• with probability 1− p a PR-box;

• with probability p/4, one of four deterministic boxes, that always outcome ++, +−, −+ and −− respectively.

Find p so that the final joint probability distribution equals the one of the singlet state. What is the probability that
Eve can guess the outcomes of their measurements?

If we look at the first entry in the table (top left), it is straightforward to see that we need

(1− p) ∗ 1

2
+ p ∗ 1

4
=

1

2
− ε, (11)

which implies that p = 4ε. One can easily verify that this result also works for the other entries in the table.
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