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Exercise 6.1 Data hiding

Consider a 2d-qubit Hilbert space, HA⊗HB, and the computational basis of both spaces. Consider the projectors onto the
symmetric and antisymmetric subspaces of HA ⊗HB,

ΠS =
1

2

∑
i<j

(
|i〉A|j〉B + |j〉A|i〉B

)(
〈i|A〈j|B + 〈j|A〈i|B

)
+
∑
i

|i〉A|i〉B〈i|A〈i|B ,

ΠA =
1

2

∑
i<j

(
|i〉A|j〉B − |j〉A|i〉B

)(
〈i|A〈j|B − 〈j|A〈i|B

)
.

You will encode only one bit of information, b, giving Alice and Bond each their d−qubit part of ρbAB, with

ρb=0 =
2

d(d+ 1)
ΠS , ρb=1 =

2

d(d− 1)
ΠA.

a) Show that ρb=0 and ρb=1 are valid density operators and explain how you would proceed to recover b if you had access
to Alice and Bond’s systems (together).

Both ΠS and ΠA are projectors (they have the form
∑

i |φi〉〈φi|, for orthonormal {|φi〉}i), so ρb=0 and ρb=1 are
Hermitian and positive semi-definite. As for normalization, we have

ρb=0 =
2

d(d+ 1)


d terms︷︸︸︷∑

i

|ii〉〈ii|+ 1

2

d(d−1)
2 terms︷ ︸︸ ︷∑
j

∑
i<j

|ij〉〈ij|+ |ji〉〈ji|+ |ij〉〈ji|+ |ji〉〈ij|


Tr(ρb=0) =

2

d(d+ 1)

(
d+

1

2

[
d(d− 1)

2
+
d(d− 1)

2

])
= 1;

and

ρb=1 =
2

d(d− 1)

1

2

d(d−1)
2 terms︷ ︸︸ ︷∑
j

∑
i<j

|ij〉〈ij|+ |ji〉〈ji| − |ij〉〈ji| − |ji〉〈ij|


Tr(ρb=1) =

2

d(d− 1)

(
1

2

[
d(d− 1)

2
+
d(d− 1)

2

])
= 1.

If we had access to both systems, we could perform the global measurement described by the POVM
{

ΠS ,ΠA,1−ΠS −ΠA
}

.
The probabilities of the three possible outcomes are (1, 0, 0) if the state is ρb=10 and (0, 1, 0) if the state is ρb=1, so
we could recover the value of b with certainty.

b) Consider the flip operator in basis {|i〉A|j〉B}ij,

F = ΠS −ΠA =
∑
i,j

|i〉A|j〉B〈j|A〈i|B .

Show that, for all operators MA ∈ End(HA), NB ∈ End(HB),

Tr[F (MA ⊗NB)] = Tr(MANB).

In particular, for all pure states |x〉A, |y〉B, Tr[F |xy〉〈xy|] = |〈x|y〉|2.
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We expand the operators in the basis of the flip operator,

M =
∑
i,j

xij |i〉〈j|, N =
∑
k,`

yk`|k〉〈`|.

Applying the flip operator, we have

F (MA ⊗NB) =
∑
i,j′

|i′j′〉〈j′i′|

∑
i,j,k,`

xij yk` |ik〉〈j`|


=
∑
i,j,k,`

xij yk` |ki〉〈j`|.

Now we take the trace,

Tr[F (MA ⊗NB)] =
∑
i′,j′

〈i′, j′|

∑
i,j,k,`

xij yk` |ki〉〈j`|

 |i′, j′〉
=
∑
i,j

xijyji.

On the other hand,

MANB =

∑
i,j

xij |i〉〈j|

∑
k,`

yk`|k〉〈`|

 =
∑
i,j,`

xijyj`|i〉〈`|,

Tr(MANB) =
∑
i′,j′

〈i′|

∑
i,j,`

xijyj`|i〉〈`|

 |i′〉 =
∑
i,j

xijyji,

which proves our claim. In the particular case of pure states, M = |x〉〈x|, N = |y〉〈y|, we can take the trace using
an on. basis {|xi〉}i, such that |x0〉 = |x〉,

Tr(MN) =
∑
i

〈xi|x〉〈x|y〉〈y|xi〉 = 〈x|y〉〈y|x〉 = |〈x|y〉|2 .

c) Suppose that Alice and Bond perform local projective measurements in arbitrary bases {|x〉A} and {|y〉B} respectively.
We call the joint probability distribution of the outcomes PXY when they measure state ρb=0 and QXY when they
measure ρb=1. We want them to be unable to determine which state they measured, i.e., to distinguish the two
distributions, so we want to show that δ(PXY , QXY ) is small. Remember that

PXY (x, y) = Tr(|xy〉〈xy|ρb=0), QXY (x, y) = Tr(|xy〉〈xy|ρb=1).

Use the results from b) to show that δ(PXY , QXY ) ≤ 2
d+1 .

Hint: start from the trace distance as

δ(PXY , QXY ) =
∑

x,y∈S
PXY (x, y)−QXY (x, y),

with S = {(x, y) : PXY (x, y) > QXY (x, y)}.
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δ(PXY , QXY ) =
∑

x,y∈S
PXY (x, y)−QXY (x, y)

=
∑

x,y∈S
Tr(|xy〉〈xy|ρb=0)− Tr(|xy〉〈xy|ρb=1)

=
∑

x,y∈S
Tr(|xy〉〈xy|[ρb=0 − ρb=1])

=
∑

x,y∈S
Tr

(
|xy〉〈xy|

[
2

d(d+ 1)
ΠS − 2

d(d− 1)
ΠA

])
Note:

2

d(d− 1)
=

2

d(d+ 1)
+

4

d(d− 1)(d+ 1)

=
2

d(d+ 1)

∑
x,y∈S

Tr
(
|xy〉〈xy|

[
ΠS −ΠA

])
− 4

d(d− 1)(d+ 1)

∑
x,y∈S

Tr(|xy〉〈xy|ΠA)

≤ 2

d(d+ 1)

∑
x,y∈S

Tr (F |xy〉〈xy|) Because ΠAprojector ⇒ 0 ≤ Tr(|xy〉〈xy|ΠA) ≤ 1

≤ 2

d(d+ 1)

d∑
x

d∑
y

|〈x|y〉|2 Note: |x〉 =

d∑
y

〈y|x〉|y〉 ⇒ |〈x|x〉|2 =
∑
y

|〈y|x〉|2

=
2

d(d+ 1)

d∑
x

〈x|x〉2 =
2

d+ 1
.

Exercise 6.2 Classical channels as TPCPMs.

a) Take the binary symmetric channel p,

1 - p

1 - p

p
p

X Y

.

Recall that we can represent the probability distributions on both ends of the channel as quantum states in a given
basis: for instance, if PX(0) = q, PX(1) = 1− q, we may express this as the 1-qubit mixed state ρX = q |0〉〈0|+ (1−
q) |1〉〈1|.
What is the quantum state ρY that represents the final probability distribution PY in the computational basis?

We have

PY (0) =
∑
x

PX(x)PY |X=x(0) = q(1− p) + (1− q)p

PY (1) = qp+ (1− q)(1− p),

which can be expressed as a quantum state ρy = [q(1− p) + (1− q)p] |0〉〈0|+ [qp+ (1− q)(1− p)] |1〉〈1| ∈ L(HY ).

b) Now we want to represent the channel as a map

Ep : S(HX) 7→ S(HY )

ρX → ρY .

An operator-sum representation (also called the Kraus-operator representation) of a CPTP map E : S(HX)→ S(HY )
is a decomposition {Ek}k of operators Ek ∈ Hom(HX ,HY ),

∑
k EkEk

† = 1, such that

E(ρX) =
∑
k

EkρXEk
†.

Find an operator-sum representation of Ep.
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We take four operators, corresponding to the four different “branches” of the channel,

E0→0 =
√

1− p|0〉〈0|
E0→1 =

√
p|1〉〈0|

E1→0 =
√
p|0〉〈1|

E1→1 =
√

1− p|1〉〈1|.

To check that this works for the classical state ρX , we do

E(ρX) =
∑
xy

Ex→y ρX E†
x→y

=
∑
xy

Ex→y

[
q|0〉〈0|+ (1− q)|1〉〈1|

]
E†

x→y

=(1− p) |0〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈0|

+ p |1〉〈0|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|0〉〈1|

+ p |0〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈0|

+ (1− p) |1〉〈1|
[
q|0〉〈0|+ (1− q)|1〉〈1|

]
|1〉〈1|

=q(1− p) |0〉〈0|
+ qp |1〉〈1|
+ (1− q)p |0〉〈0|
+ (1− q)(1− p) |1〉〈1| = ρY .

c) Now we have a representation of the classical channel in terms of the evolution of a quantum state. What happens
if the initial state ρX is not diagonal in the computational basis?

In general, we can express the state in the computational basis as ρX =
∑

ij αij |i〉〈j|, with the usual conditions
(positivity, normalization). Applying the map gives us

E(ρX) =
∑
xy

Ex→y

[∑
ij

αij |i〉〈j|
]
E†

x→y

=(1− p) |0〉〈0|
[∑

ij

αij |i〉〈j|
]
|0〉〈0|

+ p |1〉〈0|
[∑

ij

αij |i〉〈j|
]
|0〉〈1|

+ p |0〉〈1|
[∑

ij

αij |i〉〈j|
]
|1〉〈0|

+ (1− p) |1〉〈1|
[∑

ij

αij |i〉〈j|
]
|1〉〈1|

=α11(1− p) |0〉〈0|+ α11p |1〉〈1|
+ α22p |0〉〈0|+ α22(1− p) |1〉〈1|.

Using α11 := α, α22 = 1− α, we get E(ρX) = [α(1− p) + (1− α)p] |0〉〈0|+ [αp+ (1− α)(1− p)] |1〉〈1|. The channel
ignores the off-diagonal terms of ρX : it acts as a measurement on the computational basis followed by the classical
binary symmetric channel.

d) Consider an arbitrary classical channel p from an n-bit space X to an m-bit space Y , defined by the conditional
probabilities

{
PY |X=x(y)

}
xy

.

Express p as a map Ep : S(HX)→ S(HY ) in the operator-sum representation.
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We generalize the previous result as

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|ρX |x〉〈y|

=
∑
x,y

Ex→yρXE
†x→ y, Ex→y =

√
PY |X=x(y) |y〉〈x|.

To see that this works, take a classical state ρX =
∑

x PX(x) |x〉〈x| as input,

Ep(ρX) =
∑
x,y

PY |X=x(y) |y〉〈x|
(∑

x′

PX(x′) |x′〉〈x′|
)
|x〉〈y|

=
∑
x,y

PY |X=x(y) PX(x) |y〉〈y|

=
∑
y

Py(y) |y〉〈y|.

Exercise 6.3 TPCPMs as channels

Consider two single-qubit Hilbert spaces HA and HB and a TPCPM

Ep : S(HX) 7→ S(HY )

ρ→ p
1

2
+ (1− p)ρ.

a) Find an operator-sum representation for Ep.

For simplicity of notation, we denote the Pauli matrices by X,Y, Z.

Remembering that X2 = Y 2 = Z2 = 1, XY = −Y X = Z, Y Z = −ZY = X and ZX = −XZ = Y , you can verify
that

1 =
1

2
(ρ+XρX + Y ρY + ZρZ).

From this follows the operator sum representation {Mx}x,

M1 =

√
1− 3p

4
1, M2 =

√
p

2
X, M3 =

√
p

2
Y, M4 =

√
p

2
Z.

b) What happens to the radius ~r when we apply Ep? What is the physical interpretation of this?

Using the result from part a) we have

E(ρ) =
p

2
1 + (1− p) ρ

=
1

2
(1 + (1− p) ~r · ~X)

Thus, points on a sphere with radius r are mapped to a smaller sphere with radius (1− p)r — they get more mixed.
In particular, pure states will not remain pure under this CPM.

c) Now we will see what happens when we use this quantum channel to send classical information. We start with
an arbitrary input probability distribution PX(0) = q, PX(1) = 1 − q. We encode this distribution in a state ρX =
q |0〉〈0|+(1−q)|1〉〈1|. Now we send ρX over the quantum channel, i.e., we let it evolve under Ep. Finally, we measure
the output state, ρY = Ep(ρX) in the computational basis. Compute the conditional probabilities

{
PY |X=x(y)

}
xy

.

Applying the map to this state results in

E(ρX) =
(p

2
+ (1− p)q

)
|0〉〈0|+

(p
2

+ (1− p)(1− q)
)
|1〉〈1|

= PY (0) |0〉〈0|+ PY (1) |1〉〈1|,
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q

1-q

1-p/2

p/2

1-p/2
p/2

c

1-c

1-c
c

E, measure (computational) measure (new basis) .

Figure 1: The result is a binary symmetric channel with p′ = 1− c− p/2 + pc.

so PY (0) = p
2 + (1− p)q, PY (1) = p

2 + (1− p)(1− q). The conditional probabilities can be arranged in a transition
matrix (T )xy = PY |X=x(y) as follows:

T =

(
p
2 + (1− p) p

2
p
2

p
2 + (1− p)

)
=

(
1− p

2
p
2

p
2 1− p

2

)
.

We obtained the binary symmetric channel, with p′ = p/2.

d) Maximize the mutual information over q to find the classical channel capacity of the depolarizing channel.

The channel capacity of the binary symmetric channel, as has been shown in a previous exercise, is given by

C = 1−Hbin(p/2), Hbin(r) = − (r log r + (1− r) log(1− r)) , r ∈ [0, 1].

e) What happens to the channel capacity if we measure the final state in a different basis?

Take an arbitrary basis
{
|α〉, |α⊥〉

}
, where

|α〉 = cos(α)|0〉+ sin(α)|1〉, |α⊥〉 = cos
(
α+

π

2

)
|0〉+ sin

(
α+

π

2

)
|1〉 = − sinα|0〉+ cosα|1〉.

Then

PY (α) = Tr [|α〉〈α| E(ρX)] = Tr

[(
cos2 α cosα sinα

cosα sinα sin2 α

)(
PY (0) 0

0 PY (1)

)]
= cos2(α)PY (0) + sin2(α)PY (1),

PY (α⊥) = Tr
[
|α⊥〉〈α⊥| E(ρX)

]
= Tr

[(
sin2 α − cosα sinα

− cosα sinα cos2 α

)(
PY (0) 0

0 PY (1)

)]
= sin2(α)PY (0) + cos2(α)PY (1).

We can see this result in the following way: take c = cos2(α). Then “ preparing q|0〉〈0|+ (1− q)|1〉〈1|, applying Ep
and measuring in basis

{
|α〉, |α⊥〉

}
” is equivalent to the concatenation of two binary symmetric channels (Fig. 1).

The final probability distributions are the same if we apply Ep, measure in the computational basis, and then measure
again in the new basis. This holds because Ep does not change the eigenbasis of the state, and is not necessarily
true for a general TPCPM.

The capacity of the original channel is larger than the capacity of the concatenation of the two channels (because
adding another channel just adds more noise, a fact otherwise known as the data processing inequality).
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