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Exercise 4.1 Bloch sphere

We will see that density operators of two-level systems (qubits) can always be expressed as

ρ =
1

2
(1 + ~r · ~σ) (1)

where ~σ = (σx, σy, σz) and ~r = (rx, ry, rz), |~r| ≤ 1 is the so-called Bloch vector, that gives us the position of
a point in a unit ball. The surface of that ball is usually known as the Bloch sphere.

a) Using Eq. 1 :

1) Find and draw in the ball the Bloch vectors of a fully mixed state and the pure states that form
three bases, {| ↑〉, | ↓〉}, {|+〉, |−〉} and {| 	〉, | �〉}.
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2) Find and diagonalise the states represented by Bloch vectors ~r1 = (12 , 0, 0) and ~r2 = ( 1√
2
, 0, 1√

2
).

We have

ρ1 =
1

2

[
1 +

(
1

2
, 0, 0

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1

2

(
0 1
1 0

)]
=

1

4

(
2 1
1 2

)
⇒ Eigenvalues:

{
1

4
,
3

4

}
,
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ρ2 =
1

2

[
1 +

(
1√
2
, 0,

1√
2

)
· (σx, σy, σz)

]
=

1

2

[(
1 0
0 1

)
+

1√
2

(
0 1
1 0

)
+

1√
2

(
1 0
0 −1

)]
=

1

2
√

2

( √
2 + 1 1

1
√

2− 1

)
⇒ Eigenvalues: {0, 1} .

The first Bloch vector lies inside the ball (|~r1 = 1
4 |), and the state that it represents is mixed.

The Bloch vector of the second state is on the surface of the sphere, and that state is pure.

b) Show that the operator ρ defined in Eq. 1 is a valid density operator for any vector ~r with |~r| ≤ 1 by
proving it fulfils the following properties:

1) Hermiticity: ρ = ρ†.

All Pauli matrices are Hermitian and the vector ~r is real, so the result comes from direct appli-
cation of Eq. 1.

2) Positivity: ρ ≥ 0.

The general form of a state given by Eq. 1 is

ρ =
1

2

(
1 + rz rx − iry
rx + iry 1− rz

)
⇒ Eigenvalues:

{
1− |~r|

2
,
1 + |~r|

2

}
. (2)

Since 0 ≤ |~r| ≤ 1, the eigenvalues are non negative.

3) Normalisation: Tr(ρ) = 1.

From Eq. 2 we have that

Tr(ρ) =
1− |~r|

2
+

1 + |~r|
2

= 1.

c) Now do the converse: show that any two-level density operator may be written as Eq. 1.

One can always expand an operator A in an orthonormal basis {ei}i as

A =
∑
i

(A, ei)ei,

where the inner product (A,B) is defined as Tr(A∗B).

The three Pauli matrices and the identity form a basis for 2 × 2 matrices, B. However, this basis is
not normalized. A normalised basis would be

B′ =
{
σx√

2
,
σy√

2
,
σz√

2
,
1√
2

}
. (3)

We can expand any 2× 2 matrix in this basis, and in particular any two-level density operator:

ρ = Tr(ρ1)
1

2
+
∑
i

Tr(ρσi)
σi
2

(4)

=
1

2
+

1

2

(
Tr(ρσx),Tr(ρσy),Tr(ρσz)

)
·
(
σx, σy, σz

)
(5)

=
1

2
(rx, ry, rz) · (σx, σy, σz) (6)
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Where we used the property of density operators Tr(ρ) = 1. To obtain the bound |~r| ≤ 1 we use the
fact that for any density operator Tr(ρ2) ≤ 1 (because all eigenvalues λj ≤ 1 and

∑
λj = 1) and get

1 ≥ Tr(ρ2)

= Tr
([

1

2
+
∑
i

ri
σi
2

][
1

2
+
∑
i

ri
σi
2

])
=

1

4
Tr
([

1 +
∑
i

ri
2

]
1

)
(because B′ is an orthonormal basis)

=
1

2

(
1 +

∑
i

ri
2
)

1 ≥
∑
i

ri
2.

d) Check that the surface of the ball — the Bloch sphere — is formed by all the pure states.

For pure states, Tr(ρ2) = 1 and we can replace all “≥” with “=” above, obtaining |~r| = 1.

e) Discuss the analog of the Bloch sphere in higher dimensions. What can be said? For instance, where
are the pure states?

http://en.wikipedia.org/wiki/Bloch_sphere#A_generalization_for_pure_states :)

Exercise 4.2 Partial trace

Given a density matrix ρAB on the bipartite Hilbert space HA ⊗HB and ρA = TrBρAB,

a) Show that ρA is a valid density operator by proving it is:

1) Hermitian: ρA = ρ†A.

Remember that ρAB can always be written as

ρAB =
∑
i,j,k,l

cij;kl |i〉〈k|A ⊗ |j〉〈l|B,

where cij;kl = c†kl;ij is hermitian.

The reduced density operator ρA is then given by

ρA = TrB(ρAB) =
∑
i,k

∑
m

cim;km|i〉〈k|A

as can easily be verified. Hermiticity of ρA follows from

ρ†A =
∑
i,k

∑
m

c†im;km (|i〉〈k|A)† =
∑
i,k

∑
m

ckm;im|k〉〈i|A = ρA.

2) Positive: ρA ≥ 0.

Since ρAB ≥ 0 is positive, its scalar product with any pure state is positive. Let |Ψm〉AB =
|ψ〉A ⊗ |m〉B be a state in HA ⊗HB and |ψ〉A an arbitrary pure state in HA:

0 ≤
∑
m

〈Ψm|ρAB|Ψm〉

=
∑
m

〈ψ|A ⊗ 〈m|BρAB|ψ〉A ⊗ |m〉B

=
∑
m

∑
i,j,k,l

cij;kl〈ψ|i〉〈k|ψ〉A〈m|j〉〈l|m〉B

=
∑
i,k

∑
m

cim;km〈ψ|i〉〈k|ψ〉A

= 〈ψ|ρA|ψ〉
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Because this is true for any |ψ〉, it follows that ρA is positive.

3) Normalised: Tr(ρA) = 1.

Tr(ρA) =
∑
i,j

∑
m,n

cim;km〈n|i〉〈k|n〉

=
∑
m,n

cnm;nm = Tr(ρAB) = 1.

b) Calculate the reduced density matrix of system A in the Bell state |Ψ〉 = 1√
2

(|00〉+ |11〉).

The reduced state is mixed, even though |Ψ〉 is pure:

ρAB = |Ψ〉〈Ψ| = 1

2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
TrB(ρAB) =

1

2

(
|0〉〈0|+ |1〉〈1|

)
=

1

2
1A.

c) Consider a classical probability distribution PXY with marginals PX and PY .

1) Calculate the marginal distribution PX for

PXY (x, y) =


0.5 for (x, y) = (0, 0),

0.5 for (x, y) = (1, 1),

0 else,

(7)

with alphabets X ,Y = {0, 1}.
Using PX(x) =

∑
y PXY (x, y), we obtain

PX(0) = 0.5, PX(1) = 0.5.

2) How can we represent PXY in form of a quantum state?

A probability distribution PZ = {PZ(z)}z may be represented by a state

ρZ =
∑
z

PZ(z)|z〉〈z|, (8)

for a basis {|z〉}z of a Hilbert space HZ . In this case we can create a two-qubit system with
composed Hilbert space HXHY in state

ρXY
1

2

(
|00〉〈00|+ |11〉〈11|

)
.

3) Calculate the partial trace of PXY in its quantum representation.

The reduces state of qubit X is

ρX =
1

2

(
|0〉〈0|+ |1〉〈1|

)
.

Notice that the reduced states of this classical state and the Bell state are the same, the state
of the global state is very different — in particular, the latter is a pure state that can be very
useful in quantum communication and cryptography.

d) Can you think of an experiment to distinguish the bipartite states of parts b) and c)?
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One could for instance measure the two states in the Bell basis,

|ψ1〉 =
|00〉+ |11〉√

2
, |ψ2〉 =

|00〉 − |11〉√
2

,

|ψ3〉 =
|01〉+ |10〉√

2
, |ψ4〉 =

|01〉 − |10〉√
2

.

The Bell state we analised corresponds to the first state of this basis, |Ψ〉 = |ψ1〉, and a measurement
in the Bell basis would always have the same outcome. For the classical state, however, ρXY =
1
2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), so with probability 1

2 a measurement in this basis will output |ψ2〉, and we will
know we had the classical state.

5


