Exercise 11.1 Resource inequalities: teleportation and classical communication

We saw a protocol, teleportation, to transmit one qubit using two bits of classical computation and one ebit, $\frac{2}{\epsilon}$ $\frac{2}{\gamma} \geq \frac{1}{\gamma}$

(Section 6.1 of the script). Now suppose that Alice and Bob share unlimited entanglement: they can use up as many ebits as they want. Can Alice send n qubits to Bob using less than $2n$ bits of classical communication? In other words, we want to know if the following is possible:

$$
\frac{m}{\infty} \ge \frac{n}{\infty}, \qquad m < 2n.
$$

Prove that this is not the case. **Hint:** Use superdense coding.

Exercise 11.2 A sufficient entanglement criterion

In general it is very hard to determine if a state is entangled or not. In this exercise we will construct a simple entanglement criterion that correctly identifies all entangled states in low dimensions.

Recall that we say that a bipartite state ρ_{AB} is separable (not entangled) if

$$
\rho = \sum_{k} p_k \; \sigma_k \otimes \tau_k, \quad \forall k : p_k \geq 0, \sigma_k \in \mathcal{S}_{=}(\mathcal{H}_A), \tau_k \in \mathcal{S}_{=}(\mathcal{H}_B), \quad \sum_{k} p_k = 1.
$$

- a) Let $\Lambda_A : \text{End}(\mathcal{H}_A) \mapsto \text{End}(\mathcal{H}_A)$ be a positive map. Show that $\Lambda_A \otimes \mathcal{I}_B$ maps separable states to positive operators. This means that if we apply $\Lambda_A \otimes \mathcal{I}_B$ to a bipartite state ρ_{AB} and obtain a non-positive operator, we know that ρ_{AB} is entangled. In other words, this is a sufficient criterion for entanglement.
- b) Now we have to find a suitable map Λ_A . Show that the transpose,

$$
\mathcal{T}\left(\sum_{ij} a_{ij} |i\rangle\langle j|\right) = \sum_{ij} a_{ji} |i\rangle\langle j|,
$$

is a positive map from $\text{End}(\mathcal{H}_A)$ to $\text{End}(\mathcal{H}_A)$, but is not completely positive.

c) Apply the partial transpose, $\mathcal{T}_A \otimes \mathcal{I}_B$, to the ε -noisy Bell state

$$
\rho_{AB}^\varepsilon=(1-\varepsilon)\ |\psi^-\rangle\langle\psi^-|+\varepsilon\ \frac{\mathbbm{1}_4}{4},\quad |\psi^-\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle),\quad \varepsilon\in[0,1].
$$

For what values of ε can we be sure that ρ^{ε} is entangled?

Remark: Indeed, it can be shown that the PPT criterion (positive partial transpose) is necessary and sufficient for systems of dimension 2×2 and 2×3 .

Exercise 11.3 Relative Entropy

The quantum relative entropy is defined as $D(\rho||\sigma) = \text{Tr}(\rho \log \rho - \rho \log \sigma)$. For two classical probability distributions p and q, this definition simplifies to the expression for the Kullback-Leibler divergence $\sum_j p_j \log \frac{p_j}{q_j}$. Similar to the classical case, the relative entropy serves as a kind of "distance" between quantum states (although it is not technically a metric). Show that

- a) $H(A|B) = -D(\rho||\mathbb{1}_A \otimes \rho_B)$
- b) $D(\rho||\sigma) \geq 0$, with equality if and only if $\rho = \sigma$
- c) $D(\rho||\sigma) \leq \sum_k p_k D(\rho_k||\sigma)$, where $\rho = p_1 \rho_1 + p_2 \rho_2$
- d) For any CPTPM $\mathcal{E}, D(\rho||\sigma) \geq D(\mathcal{E}(\rho)||\mathcal{E}(\sigma))$
- e) $D(\rho||\sigma)$ is not a metric. Show this by proving that it is not symmetric.