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Exercise 3.1 Channel capacity
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(c) Yet Another Channel

a) The asymptotic channel capacity is given by

C = max
PX

I(X : Y ).

Calculate the asymptotic capacities of the first two channels depicted above.

b) We can exploit the symmetries of some channels to simplify the calculation of the capacity.

Consider N possible probability distributions as input to a general channel,
{
P iX
}
i
, with the property that I(X :

Y )P i = I(X : Y )P j ,∀i, j. Suppose you choose which distribution to use for the input by checking a random variable,
B, with possible values b = {1, . . . , N}. Show that I(X : Y |B) ≤ I(X : Y ).

How can you use that to find the probability distribution PX that maximises the mutual information for symmetric
channels? Hint: consider

{
P iX
}
i

permutations of P 1
X .

c) Using the result from b), compute the capacity of the last channel. How would you proceed to reliably transmit one
bit of information?

Exercise 3.2 Smooth min-entropy in the i.i.d. limit

The smooth min-entropy of a random variable X over X is defined as

Hε
min(X)P = max

QX∈Bε(PX)
Hmin(X)Q, (1)

where the maximum is taken over all probability distributions QX that are ε-close to PX . Furthermore, we define an
i.i.d. random variable ~X = {X1, X2, . . . , Xn} on X×n with P ~X(~x) =

∏n
i=1 PX(xi).

Use the weak law of large numbers to show that the smooth min-entropy converges to the Shannon entropy H(X) in the
i.i.d. limit:

lim
ε→0

lim
n→∞

1

n
Hε

min( ~X)Pn = H(X)P . (2)

Exercise 3.3 Quantum-Telepathy Game: Introduction

a) Consider a game with two players, Alice (P1) and Bob (P2). They first agree on a strategy and then each receive
one qubit of the quantum state:

|φ〉 =
1√
2

(|+−〉+ | −+〉) , (3)

in the Hilbert space H1⊗H2, where |+〉 = (|0〉+ |1〉)/
√

2 and |−〉 = (|0〉−|1〉)/
√

2. The players cannot communicate
once they get their qubits, and they must output two bits x1 and x2. They win if x1 6= x2.
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i) Find projective measurements that the players can perform so that they always get opposite outcomes x1
and x2.

ii) Explain how this game can be won without using |φ〉.

b) Now we consider a game with 3 players. Initially, each player controls one qubit of the quantum state

|Ψ3
−〉 =

1√
2

(|000〉 − |111〉). (4)

Two of the three players, Alice (P1) and Bob (P2), will be chosen randomly and separated from the third player (and
also each other) so that they cannot communicate. The third player, Charlie (P3), will then perform a measurement
on his qubit and will have one of two outcomes. Depending on the outcome, Charlie will choose a bit b to be either
0 or 1. He then forwards b to Alice and Bob. Finally Alice and Bob each output a bit: x1 and x2. They win if
x1 6= x2.

In order to use the quantum state they share to their advantage, Alice and Bob want to perform measurements
(which dependend on the bit b they received) such that they get different outcomes.

i) First, rewrite the state |φ〉 in the computational basis ({|0〉, |1〉} for each qubit).

ii) What projective measurement should Charlie do so that when he gets outcome b = 0 the other two players
are left with the state |φ〉 from part (a) (Eqn. 3)? Note that if we project onto a state |τ〉 on system 3, then
the post-measurement state, given an initial pure state |Φ〉, is given by:(

1
⊗2 ⊗ 〈τ |3

)
|Φ〉

|(1⊗2 ⊗ 〈τ |3) |Φ〉|
,

where 1 is the identity operator on a qubit space.

iii) What is the state |ψ〉 that Alice and Bob share after Charlie gets the other outcome (b = 1)? Write |ψ〉 in
the basis {| �〉 = (|0〉+ i|1〉)/

√
2, | 	〉 = (|0〉 − i|1〉)/

√
2}.

iv) What projective measurements should Alice and Bob do in order to get different results from the state |ψ〉?

Exercise 3.4 Quantum-Telepathy Game: The Full Story

Now we consider the full quantum-telepathy game. The game starts with n collaborating players P1, P2, . . . , Pn who each
have a qubit of a large state |Ψ〉 in the Hilbert space H1⊗H2⊗ · · ·⊗Hn so player Pi has control of the qubit in the space
Hi. Then two of players, P1 and P2, will be randomly selected and separated from the other players. They are separated
without the knowledge of which other player was selected, and they cannot communicate with any of the players, including
each other. The remaining n− 2 players are allowed to communicate with each other, and perform measurements on the
qubits they each control. They then send a bit b (either 0 or 1) to the two separated players. P1 and P2 then output bits
x1 and x2 respectively. They win the game if x1 6= x2.
We know from the previous exercise that the game will always be won if the last three players share the state |Ψ3

−〉. In
particular, you should have found measurements for the third player that always give one of two post-measurement states:

Mb3=0
3 (|Ψ3

−〉)→ |Ψ2
−〉, Mb3=1

3 (|Ψ3
−〉)→ |Ψ2

+〉,

where we define Ψn
± = (|0〉⊗n ± |1〉⊗n)/

√
2 and Mbk

k denotes the (normalized) projector for a measurement on qubit k
with outcome bk.

a) Use the same measurement you found in 3.2 (b) (ii) to find the possible results ofMn(|Ψn
±〉): M0

n(|Ψn
+〉), M1

n(|Ψn
+〉),

M0
n(|Ψn

−〉), and M1
n(|Ψn

−〉).

b) Explain a detailed quantum strategy that always wins this game.
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