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2 Classical Free Scalar Field

In the following we shall discuss one of the simplest field theory models, the
classical non-interacting relativistic scalar field.

2.1 Spring Lattice

Before considering field, start with an approximation we can certainly handle:
lattice.

Consider an atomic lattice:

1D or 2D cubic lattice,

atoms are coupled to neighbours by springs,!

atoms are coupled to rest position by springs,

atoms can move only orthogonally to lattice (transverse),
boundaries: periodic identification.
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model parameters and variables:

lattice separation 7,

number of atoms N (in each direction),
mass of each atom ,

lattice spring constant k,

return spring constant A,

shift orthogonal to lattice g;

Lagrangian Formulation. Lagrange function

L= Lkin - Viat - ‘/rest (22)

1Springs are useful approximations because they model first deviation from rest position; always
applies to small excitations.
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Standard non-relativistic kinetic terms

Potential for springs between atoms (ignore x, y-potential)?

N N
Wiat = %H Z (qim15 — 4i5)° + %ﬁ Z (Gij—1 — Gij)* (2.4)
i,j=1 4,y=1

Some spring potential to drive atoms back to rest position

rest %A Z qz,‘] (25)

i,j=1
Quadratic in ¢’s: bunch of coupled HO’s. Equations of motion
K(qi-14 — 2415 + Qit1,5)
K(Gij—1 — 2Gij + Gijr1)
Note: spatially homogeneous equations. Use discrete Fourier transform to solve
(respect periodicity)
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Used freedom to define coefficients c;; to introduce prefactors.Complex conjugate
coefficients ¢ ; in second term ensure reality of g; ;. Note: ¢j ; represents mode of
opposite momentum and energy w.r.t. ¢!

E.o.m. translates to dispersion relation:
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2Can ignore due to d? = d? + d2 + d?, shifts potential by an irrelevant constant. Moreover

longitudinal and transverse excitations decouple.
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Hamiltonian Formulation. Define momenta

oL

Derive Hamiltonian function as Legendre transform of L
| X
H = Hkin + Viat + V;est with Hkin = ﬂ Z pij.

ij=1
Then define canonical Poisson brackets

(=S (2 00 o)

0¢i; Opi;  Opiy 0qi

ij=1

In other words {¢; ;, pjx} = 0ixd;; and {q,q} = {p,p} = 0.

Fourier Modes. Introduce new complex variables (Fourier transform)

1

g = —F——
V2w 57

Transformed Hamiltonian is very simple

N

N
]' *
H= N2 E W, 1A 1Ak,1-

k=1
Poisson brackets for new variables are simple, too
{CLZ'J, a,’;l} = —1 N2 (Si,kéj,la
{aij, ari} = {aj;,a5,} = 0.
Can convince oneself that equations of motion hold
apy = —{H, ap;} = —iwp an,,
ap, = —{H,ay,} = +iwgay,;.

and solved by above Lagrangian solution

ar(t) = ¢ exp(—iwg,t), az,l(t) = Chy exp(+iwg t).

2.2 Continuum Limit

Now turn this spring lattice into a smooth field ¢:

send number of sites N — oo.

box of size L in all directions; lattice separation r = L/N — 0.
positions x = ir = iL/N,

field ¢;, . = (7).

generalise to d spatial dimensions, e.g. d =1, 2, 3.

Some useful rules

1
Z - " /dw, ¢ — qi-1 — r(0p)

i=1

2.3

al i
Z exp (—(lﬂ + lj)) (1eonigij + ipi)-

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Lagrangian Formulation. Substitute this in Lagrangian

d= [ _H .2 K30 A o
L—>/d9§ (2_7490 —2rd72(8g0) —Q—Mgp). (2.19)

Diverges as r — 0, but can rescale parameters. Suitable rescalings

= k=12 X=ri)\ (2.20)
Parameters become densities. Lagrangian functional
Lip.dl0) = [ 7 (406 ~ 4r(@0)? - 130%) (221)
Can furthermore rescale field ¢ = &~/%¢
Liodl(0) = [ a5 (3 - 300" - 1hn 7). (222
Derive e.o.m.: start with action functional S[¢]
Sl) = / dt L[o)(t) = / dEdT L(6(F, 1), 0:0(7,1), (T, 1), (2.23)

useful to express (homogeneous) Lagrange functional L[¢](t) through Lagrangian

density L(¢, Db, ) (the Lagrangian).

Vary action functional (discard boundary terms)

oc o0 oL d oL !
_ d= N e .. .=0. 2.24
55([¢] /dtd x5¢(a¢ 57 5od) a¢) + 0 (2.24)
Write general Euler-Lagrange equation for fields
oL , o oL doc,, .
a—¢(x,t) T o m(%ﬂ I 8—q-5($,?5) = 0. (2.25)
In our case . _
— R e+ 0% — Mo = 0; (2.26)

agrees with continuum limit of discrete e.o.m.. Now denote as speed of light ¢ and
mass m )
prlt=c?=1, A&l =m? (2.27)

to discover Klein-Gordon equation (set ¢ = 1)

— 2+ 0% —mPp =0, (2.28)
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Plane Wave Solutions. Consider solutions on infinite space and time.
Homogeneous equation solved by Fourier transformation

dp

6(F 1) = / e ) exp(ifE = (o))
d’p . NI
+ / 2ni2e0) o (P) exp (+ip-T + ie(p)t) (2.29)

with (positive) energy e(p) on mass shell (often called w(p))

e(p) = /p?+m?2. (2.30)

Agrees with discrete solution identifying momenta as

= L o(p)
p=2rk/L, E — Q—/dp, Cp,. = _ap) (2.31)
T
k=1

V2e(p)rd

Some remarks on factors and conventions:

e Fourier transforms on R produce factors of 27, need to be put somewhere.
Convention to associate (27)~! to every dp: dp := dp/2.
No factors of 27 for dz. No factors of 27 in exponent.

e Combination d?p/2e(p) is a useful combination: Relativistic covariance. Reason
for conversion factor in ¢y, .

2.3 Relativistic Covariance

The Klein-Gordon equation can be written manifestly relativistically®
— "0, + m*p = —0%¢ + m?p = 0. (2.32)

Also Lagrangian and action manifestly relativistic
L=-10¢)?-1im*¢*,  S= /de L. (2.33)

To understand the relativistic behaviour of the solution, consider integration over a
mass shell p? +m? = 0

/de 5(p* +m*)0(°) f(p)
_ / d5de 5(—e® + 52 + m2)(e) (e, p)

_ / TDde 50— SFE T mR)(e) flerp)

2e

R
- [ 5o Felin ) (2.34)

392 often written as D’Alembertian .
4Signature of spacetime is —+++!
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Solution is just Fourier transform

¢(z) = / Ll ¢(p) exp(—ip,a")
(2m)P g
with momentum space field defined on shell only

¢(p) = 278 (p* +m?) (0(po)v(p) + O(—po )™ (—p)).

Momentum space e.o.m. obviously satisfied

(p* +m?)¢(p) = 0.

a(p) and o*(p) define amplitudes on forward /backward mass shells.

Alf), dly)

N

N

x(g), a(g)
Note that ¢(p) obeys reality condition (from ¢(z)* = ¢(x))
¢(p)" = o(=p).

2.4 Hamiltonian Field Theory

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

Now that we have a nice relativistic formulation for the Klein-Gordon field ¢(z),

let’s separate space from time. °

Position Space. Define momentum = (field) conjugate to ¢

8L oL
"= 5@ " 9

(Z,1) = §(T,1).
Determine Hamiltonian
Hlo.w) = [ d'img— Lio.d
= /ddf (%W2 + 1(00)* + %m2¢2) .

5Formalism breaks relativistic invariance, physics remains relativistic.
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Not relativistically covariant, not designed to be.®

Define Poisson brackets for phase space functionals f, g

S )

Poisson brackets of fields yield delta-functions”

(6(@),x(§)} = / 1259 — 5N G — 2) = 5(F - 7).

Momentum Space. Now introduce momentum modes®

o(f) = / 047 exp (iE) (e(P)9(E) + in()),

and inverse Fourier transformation
— ddﬁ C
() = /W a(p) exp(—ip-7)

ddﬁ * = =
+/WG (p) exp(+ip-T),

"= -5 | gﬂf a(P) exp(~id)

+ 5 [ ST espipa)
= exp(+ip-a
3 | [y @ ) explEip

Compute Poisson brackets for Fourier modes

{a(@),a”(@)} = —i2¢(p) (2m)"6°(F - @).

9 10

In other words
(.0} = =ien)? [ a5 (5on
Hamiltonian translates to
1 [ dip diy .
1 =3 [ G0 ) = [ G i (ato)

Hence e.o.m. for field oscillator

a(p) = —{H,a(p)} = —ie(p)a(q),
a*(p) = —{H,a" ()} = +ie(p)a”(q)-

One HO for every momentum. Solution

dg S5f g )
p) 6a*(p)  da*(p) ba(p))

af,t) = a(p) exp(—ie(P)t), @ (B.t) = o (F) exp(+ie(p)).

SHamiltonian governs time translation.

"Formula for variation §¢(Z)/04(2) = §4(Z — 7).

8Have some additional factors compared to some literature.
9Conventional 27 for delta-function in momentum space.
OFactor 2e(p) appropriate relativistic measure for mass shell.
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