
A
n Introduction to Parallel C

om
puting 
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Parallel com
puting

♦
W

hat is parallel com
puting?

♦
W

here does one need parallel 
com

puting?

♦
W

ho needs parallel 
com

puting?
♦

Application areas on 
top500.org

source: top500.org
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Let’s do parallel com
puting!

♦
Assum

e every seat in the room
 is a “com

putational core”

♦
How do we distribute N pieces of paper in parallel?

♦
How do we sum

 together num
bers?

3

W
hat w

ere the key ideas?
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The parallel idea

♦
Sequential:
♦

Problem
 is split into pieces

♦
Instructions are executed one 
after the other by the CPU

♦
Parallel:
♦

Problem
 is split into m

any 
independents sequences

♦
M

any CPUs executes the 
sequences concurrently

♦
Not always easy to split the 
problem

!
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Types of architectures - taxonom
y

♦
Taxonom

y introduced M
. Flynn in 1966 [Proc. IEEE, vol.54, no.12, pp. 1901- 1909, Dec. 1966]

♦
Today we cover parallel program

ing in term
s of M

IM
D system

s

SISD
SIM

D

M
ISD

M
IM

D

data stream

instruction stream
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Types of architectures - taxonom
y

♦
SISD
♦

single instruction - single data: an ordinary serial CPU

♦
SIM

D
♦

single instruction - m
ultiple data

♦
all CPUs perform

 exactly the sam
e operation on different data

♦
was often used in the first parallel m

achines, now uncom
m

on
♦

Altivec (PowerPC) and SSE (Pentium
) are SIM

D units
♦

G
PU are the new im

plem
entation of SIM

D architectures
♦

program
m

ing environm
ent: CUDA, O

penCL

♦
M

IM
D

♦
m

ultiple instruction - m
ultiple data

♦
nowadays the m

ost com
m

on type - all CPUs can run independently, 
doing different tasks
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Shared m
em

ory architectures

♦
share a com

m
on m

ain m
em

ory
♦

are easy to program
 since

all CPUs access the sam
e data

♦
Disadvantages
♦

scales well only to about 48 CPUs
♦

concurrent access to m
em

ory is a problem
♦

on PCs and workstations:
♦

all CPUs share a path to the m
em

ory
♦

one CPU that accesses the m
em

ory blocks all others
♦

on vector com
puters like Crays, etc: 

♦
all CPUs have a full path to the m

em
ory

♦
no interference between CPUs!

CPU 1

CPU 2
CPU 4

CPU 3
SHARED

MEMORY
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D
istributed m

em
ory architectures

♦
each CPU has access
only to its local m

em
ory

♦
access to data of other
CPUs only by 
com

m
unicating with these CPUs

♦
Disadvantages
♦

access to rem
ote m

em
ory is slow

♦
harder to program

 efficiently

♦
Advantage
♦

m
uch m

uch cheaper

C
PU

 1
C

PU
 2

C
PU

 4
C

PU
 3

local
m

em
ory

local
m

em
ory

local
m

em
ory

local
m

em
ory
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Parallel m
achines

♦
SIM

D style
♦

O
ld m

achines: M
asPar, Thinking M

achines 1 and 2
♦

heterogeneous system
s (CPU+G

PU) appearing again in top500.org
♦

Cray XK7, Tianhe-1A

♦
M

IM
D m

achines
♦

Cray XE6, IBM
 BlueG

ene, Fujitsu K
♦

achieve m
ore than 10 Petaflops perform

ance!
♦

fastest m
achines on the world

♦
Beowulf clusters
♦

clusters of PCs running Linux, best price-perform
ance ratio

♦
pioneered by physicists at NASA, Los Alam

os, Sandia, …
♦

20’000-CPU cluster is available at ETH

10



ETH
 Brutus cluster

♦
Heterogeneous system

 with a total of 19’760 processor cores in ca. 
1’000 com

pute nodes
♦

Com
putation power of 200 Teraflops

♦
Shared m

em
ory

program
m

ing m
odel on nodes

♦
Distributed m

em
ory

program
m

ing m
odel across nodes

♦
Ranked the 88th fastest com

puter
in the world in Novem

ber 2009
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C
SC

S -  Sw
iss N

ational Supercom
puting C

entre

C
R

A
Y

 X
E6

 –
 R

osa:
     2’992 A

M
D

 16-core O
pteron @

 2.1 G
H

z -->
 47’872 cores

    46 TB
 D

D
R
2 R

A
M

    290 TB
 D

isk
    9.6 G

B
/s interconnect bandw

idth

C
om

putation pow
er of 402 Teraflop/s
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C
luster vs. Supercom

puter

♦
W

hat is the real difference?
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C
luster vs. Supercom

puter

C
ray X

E
6
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C
luster vs. Supercom

puter

♦
Network is the m

ain part of a Supercom
puter!
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N
etw

ork topologies

♦
all-to-all: 
♦

needs N(N-1)/2 connections, but fastest com
m

unication
♦

Hypercube
♦

nodes on edges of hypercube, N log
2 N connections

♦
3D crossbar
♦

nodes on cube, 6N connections, used in Cray, IBM
 BlueG

ene
♦

2D crossbar
♦

nodes on square, 4N connections, used in older supercom
puters

♦
Ring
♦

2N connections, slow connection but appropriate for som
e problem

s
♦

Star
♦

used often in Beowulf clusters, nodes connected to a switch
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♦
Network consists of p = 2

d processors
♦

exam
ple: 16 processors lies on the edges of a 4-dim

 hypercube

H
ypercube interconnect
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C
oarse G

rain Parallelism

♦
Parallelization can occur at m

any levels

♦
Coarse grain parallelization is sim

ply running several independent 
program

s on different CPUs

♦
Can be used to sim

ulate m
any different param

eter sets like
♦

tem
peratures

♦
system

 sizes
♦

m
utation rates

♦
This is very com

m
on in physics

♦
W

e just need an efficient queuing system
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M
edium

 G
rain Parallelism

♦
For big problem

s we want to parallelize one program

♦
M

edium
 grain parallelism

 m
akes use of the fact that som

e routines 
can be perform

ed independently

♦
This needs som

e extra program
m

ing work
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Fine G
rain Parallelism

♦
In order to scale to m

any hundreds of CPUs often fine grain 
parallelism

, within one function, is needed
♦

Exam
ple:

for (int j=0;j<N;+j)
  a[j]=b[j]+c[j];
could be split over M

 CPUs, each perform
ing the sum

m
ation on 1/M

-
th of the vectors

♦
This can som

etim
es be done autom

atically by sm
art com

pilers
♦

usually only in sim
ple for loops,

♦
and on shared m

em
ory m

achines

♦
In C++, libraries that can do this can be developed
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Shared m
em

ory

21

O
penM

P standard for shared m
em

ory architectures

♦
Hom

e page: http://www.openm
p.org

♦
Contains the specification of the standard
including m

any exam
ples

♦
W

e will look at the C/C++ standard

♦
Sem

i-autom
atic parallelization using directives

♦
A directive is written as a line before the statem

ent or block of 
statem

ents:

#pragma omp 
d
i
r
e
c
t
i
v
e

♦
Som

e auxiliary function calls

22



O
ne additional line of code →

 perfect scaling

♦
Serial:

♦
Parallel:

const std::size_t nsamples = 1E10;
double mean = 0.;
std::mt19937 rng(42);
mean = calcpi4(rng, nsamples/double(nthreads)+0.5);

double error = std::sqrt(1./(nsamples-1.) * (mean - mean*mean));
std::cout << "pi = " << 4*mean << " +/- " << 4*error << std::endl;

const std::size_t nsamples = 1E10;
double mean = 0.;
#pragma omp parallel reduction(+:mean)
{    std::mt19937 rng(rank);
    mean = calcpi4(rng, nsamples/double(nthreads)+0.5);
}mean /= nthreads;

double error = std::sqrt(1./(nsamples-1.) * (mean - mean*mean));
std::cout << "pi = " << 4*mean << " +/- " << 4*error << std::endl;
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O
ne additional line of code →

 perfect scaling

0 10 20 30 40 50

0
10

20
30

40
50

speedup

#
 cores
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Parallel region

♦
Threads are spawn at the beginning of the parallel block

♦
At the end of the parallel block, the code is again serial

#include <iostream>
#include <omp.h>

int main()
{  #pragma omp parallel
  {
    // now we execute this block in multiple threads
    std::cout << "I am thread " << omp_get_thread_num()
              << " of " << omp_get_num_threads() << " threads." << std::endl;
  } 
}

im
age from

: https://com
puting.llnl.gov/tutorials/openM

P25

Parallel sum
 w

ith O
penM

P

♦
W

e want to perform
 the sum

 c[i] = a[i] + b[i] in parallel

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 1.), b(N, 1.5), c(N);
    
    for (std::size_t i = 0; i < N; ++i)
        c[i] = a[i] + b[i];
}

26



Parallel sum
 w

ith O
penM

P

♦
W

e want to perform
 the sum

 c[i] = a[i] + b[i] in parallel

♦
all threads are now running the full loop

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 1.), b(N, 1.5), c(N);
    
#pragma omp parallel
    {
        for (std::size_t i = 0; i < N; ++i)
            c[i] = a[i] + b[i];
    }
}
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Parallel sum
 w

ith O
penM

P

♦
W

e want to perform
 the sum

 c[i] = a[i] + b[i] in parallel

♦
every thread work on different parts of the loop

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 1.), b(N, 1.5), c(N);
    
#pragma omp parallel
    {
        int t = omp_get_thread_num();
        int nthreads = omp_get_num_threads();
        
        long double const step = (nterms+0.5l) /  nthreads;
        int stop = (t+1) * step;
        for (std::size_t i = t * step; i < stop; ++i)
            c[i] = a[i] + b[i];
    }
}
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R
unning a program

 w
ith O

penM
P

♦
G

et sources from
 repository

♦
Com

pile the program
♦

g++ -fopenm
p hello1.cpp -o hello1

♦
Run the program

 (as usual)
♦

./hello1
♦

it runs using the m
axim

um
 num

ber of threads

♦
The num

ber of threads can be specified at run-tim
e

♦
export O

M
P_NUM

_THREADS=4
♦

./hello1
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Parallel sum
 w

ith O
penM

P

♦
Since loop parallelization is very com

m
on, there is an autom

atic 
shortcut

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 1.), b(N, 1.5), c(N);
    
#pragma omp parallel
    {
#pragma omp for
        for (std::size_t i = 0; i < N; ++i)
            c[i] = a[i] + b[i];
    }
}
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Parallel sum
 w

ith O
penM

P

♦
Since loop parallelization is very com

m
on, there is an autom

atic 
shortcut
♦

Even shorter!

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 1.), b(N, 1.5), c(N);
    
#pragma omp parallel for
    for (std::size_t i = 0; i < N; ++i)
        c[i] = a[i] + b[i];
}

31

D
O

T product w
ith O

penM
P

♦
Let’s parallelize sim

ilar to the previous exam
ple.

♦
W

hat is the output?

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 2.), b(N, 1.5);
    
    double sum = 0.;
#pragma omp parallel for
    for (std::size_t i = 0; i < N; ++i)
        sum += a[i] * b[i];
    
    std::cout << "Dot product is" << sum << std::endl;
}
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R
ace condition

♦
Sequential execution

♦
M

ultithreaded execution
♦

(one of the m
any)

Thread 1
i=0

read i
←

0

increm
ent value

0

write back i
→

1

read i
←

1

increm
ent value

1

write back i
→

2

Thread 1
Thread 2

i=0

read i
←

0

increm
ent value

0

read i
←

0

write back i
→

1

increm
ent value

1

write back i
→

1
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D
O

T product w
ith O

penM
P

♦
O

penM
P critical sections are executed by one thread at a tim

e
♦

it solves race conditions
♦

but it m
akes the code slower

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 2.), b(N, 1.5);
    
    double sum = 0.;
#pragma omp parallel for
    for (std::size_t i = 0; i < N; ++i)
#pragma omp critical
        sum += a[i] * b[i];
    
    std::cout << "Dot product is" << sum << std::endl;
}
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D
O

T product w
ith O

penM
P

♦
The sum

 can be perform
ed in parallel in O

(log(N)) com
plexity

♦
O

penM
P has a shortcut for it

♦
#pragma omp for reduction(

o
p
e
r
a
t
o
r: 

v
a
r
i
a
b
l
e)

#include <iostream>
#include <omp.h>

int main()
{    unsigned long const N = 100;
    std::vector<int> a(N, 2.), b(N, 1.5);
    
    double sum = 0.;
#pragma omp parallel for reduction(+:sum)
    for (std::size_t i = 0; i < N; ++i)
        sum += a[i] * b[i];
    
    std::cout << "Dot product is" << sum << std::endl;
}
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Penna m
odel w

ith O
penM

P

♦
How to parallelize the Population::step() function?

♦
Rem

em
ber that with a Bidirectional iterator

void Population::step()
{    // Age all animals
    for_each( begin(), end(), mem_fun_ref(&Animal::grow) );
}std::list<Animal> population;
// init
...
typedef typename std::list<Animal>::iterator iterator;
iterator start = population.begin();
iterator it1   = ++start;                  // O(1)
iterator it2   = std::advance(start, n);   // O(n)
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Penna m
odel w

ith O
penM

P

♦
The usual O

penM
P approach would perform

 sim
ilar to

♦
Terribly slow

!

std::size_t step = population.size() / omp_get_num_threads();
#pragma omp parallel
{    std::size_t t = omp_get_thread_num();
    iterator it   = std::advance(population.begin(), step*t);
    iterator end  = std::advance(population.begin(), step*(t+1));
    for(; it!=end; ++it)
        it->grow();
}
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Penna m
odel w

ith O
penM

P

♦
New idea, O

penM
P tasks.

♦
Tasks are lightweight objects that get pushed into a task queue, 
idle threads pull tasks from

 the queue
♦

Allow to parallelize irregular problem
s:

♦
unbounded loops

♦
recursive algorithm

s
♦

producer/consum
er schem

es
♦

... #pragma omp parallel
#pragma omp single nowait
    for(iterator it=population.begin(); it!= end(); ++it)
#pragma omp task
        it->grow();
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O
verview

 of O
penM

P directives

♦
#pragma omp parallel

♦
O

ptional clauses:

♦
Exam

ple:

M
ore at http://w

w
w

.openm
p.org/m

p-docum
ents/O

penM
P

3.1.pdf

#pragma omp parallel private(i) shared (n) if (n>10)
{    ...
}

if 
(
s
c
a
l
a
r
_
e
x
p
r
e
s
s
i
o
n
)

O
nly parallelize if the expression is true. Can be used to stop 

parallelization if the work is too little

private 
(
l
i
s
t
)

The specified variables are thread-private
shared 

(
l
i
s
t
)

The specified variables are shared am
ong all threads

default (shared | none)
Unspecified variables are shared or not

copyin 
(
l
i
s
t
)

Initialize private variables from
 the m

aster thread
firstprivate 

(
l
i
s
t
)

A com
bination of private and copyin

reduction 
(
o
p
e
r
a
t
o
r
:
 
l
i
s
t
)

Perform
 a reduction on the thread-local variables and assign it to 

the m
aster thread

num_threads 
(
i
n
t
e
g
e
r
-
e
x
p
r
e
s
s
i
o
n
)

Set the num
ber of threads
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O
verview

 of O
penM

P directives

♦
#pragma omp for

♦
O

ptional clauses:

♦
Scheduling options:

M
ore at http://w

w
w

.openm
p.org/m

p-docum
ents/O

penM
P

3.1.pdf

nowait
There is no im

plicit barrier at the end of the for. Useful, e.g. if 
there are two for loops in a parallel section.

ordered
The sam

e ordering as in the serial code can be enforced
collapse 

(
n
)

collapse n nested loops into one and parallelize it
schedule 

(
t
y
p
e
 
[
,
c
h
u
n
k
]
)

specify the schedule for loop parallelization (see below)

STATIC
Loop iterations are divided into fixed chunks and assigned statically

D
Y

N
A

M
IC

Loop iterations are divided into fixed chunks and assigned dynam
ically 

whenever a thread finished with a chunk.

G
U

ID
ED

Like dynam
ic but with decreasing chunk sizes.

The chunk param
eter defines the m

inim
um

 block size
RU

N
TIM

E
decide at runtim

e depending on the O
M

P_SCHEDULE environm
ent variable

A
U

TO
decided by com

piler and/or runtim
e system
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O
verview

 of O
penM

P auxilliary functions

♦
In header: #include <omp.h>

♦
omp_get_thread_num() …

 returns the num
ber of the current thread

♦
omp_set_num_threads(int) …

 sets the num
ber of threads

♦
omp_get_num_threads() …

 returns the num
ber of threads

♦
omp_get_max_threads() …

 returns the m
axim

um
 num

ber of threads
♦

omp_get_num_procs() …
 returns the num

ber of processors used
♦

omp_set_dynamic(bool) …
 enables/disables autom

ic adjustm
ent

!
!

!
!

  of the num
ber of threads

♦
omp_get_dynamic() …

 returns if autom
atic adjustm

ent is allowed

♦
All these functions work only with O

penM
P. To m

ake the code portable 
use the following trick to e.g. enforce four threads if O

penM
P is used:

#ifdef _OPENMP
omp_set_dynamic(false);
omp_set_num_threads(4);
#endif M

ore at http://w
w

w
.openm

p.org/m
p-docum

ents/O
penM

P
3.1.pdf
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O
penM

P conclusions

♦
O

penM
P is

♦
sim

ple threading on shared m
em

ory platform
s

♦
portable and standardized across m

any platform
s and com

pilers
♦

supporting C/C++ and Fortran
♦

lean and ease, easy to use, augm
ent code with com

piler directives

♦
O

penM
P is easy to use but is not

♦
checking for data dependencies, conflicts, race conditions, or 
deadlocks

♦
giving you the best optim

ized code
♦

im
plem

ented in the sam
e way on all com

pilers
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O
penM

P is m
uch m

ore than this

♦
W

e didn’t touch:
♦

parallel sections
♦

nested parallelism
♦

synchronization (barrier, nowait, etc.)
♦

worksharing constructs (single, master, etc.)

♦
M

ore advanced lecture will have a m
ore detailed view

♦
High Perform

ance Com
puting for Science and Engineering

♦
Learn from

 exam
ples

♦
http://www.openm

p.org

43

D
istributed m

em
ory

44



M
essage Passing on distributed m

em
ory architectures

♦
O

n distributed m
achined we need to program

 the com
m

unication 
between processes running on the CPUs (also called nodes)

♦
This is called m

essage passing

♦
Vendor specific libraries have been replaced by the M

PI standard

♦
If you know how to send Christm

as greetings by postal m
ail you 

know all you need to know

C
PU

 1
C

PU
 2

C
PU

 4
C

PU
 3

local
m

em
ory

local
m

em
ory

local
m

em
ory

local
m

em
ory
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M
PI standards

♦
G

oals of the M
PI standard:

♦
portable, efficient, easy to use

♦
works on distributed m

em
ory, shared m

em
ory and hybrid system

s

♦
Versions of the M

PI standard:
♦

M
PI-1 was first finished in 1992, m

inor updates over the years (1.1, 
1.2, 1.3)

♦
M

PI-2 was first proposed 1998 and adds one-sided com
m

unication, I/
O

, and creation of processes
♦

M
PI-3 was finalized Septem

ber 2012 and adds m
ore features, in 

particular non-blocking collective com
m

unication

♦
W

e will cover m
ainly M

PI-1 since that is what is needed for m
ost 

codes
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W
hat is a m

essage?

♦
A m

essage is a block of data sent by one node to another

♦
It usually consists of
♦

pointer to buffer containing data
♦

length of data in the buffer
♦

a m
essage tag, usually an integer identifying the type of m

essage
♦

num
ber of the destination node(s)

♦
num

ber of the sender node
♦

optionally a data type

♦
The m

essage is passed through the network from
 the sender to the 

receiving node

47

Sending and receiving a m
essage

♦
A parallel “Hello W

orld” program
♦

node 1 sends a string with tag 99 to node 0
♦

node 0 receives a string with tag 99 from
 node 1

 and prints it
#include <iostream>
#include <string>
#include <mpi.h>

int main(int argc, char** argv) {
    
    MPI_Init(&argc, &argv);
    int num;
    
    MPI_Comm_rank(MPI_COMM_WORLD,&num);
    
    if(num==0) { // master
        MPI_Status status;
        char txt[100];
        MPI_Recv(txt,100,MPI_CHAR,1,99,MPI_COMM_WORLD,&status);
        std::cout << txt << "\n";
    }
    else { // slave
        std::string text="Hello world!";
        MPI_Send(const_cast<char*>(text.c_str()),text.size()+1,MPI_CHAR,0,99,MPI_COMM_WORLD);
    }
    
    MPI_Finalize();
}
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The structure of an M
PI program

#include <mpi.h>

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv); // initialize the environment
    ... // do something

  MPI_Finalize();         // clean up at the end

  return 0;
}

♦
Include the header <m

pi.h>
♦

You need to initialize and term
inate the M

PI environm
ent in your code.

♦
Note that you need to pass pointers to argc and argv. The M

PI 
environm

ent m
ight grab som

e com
m

and line options and return a 
m

odified list of options.

49

Initialization and term
ination functions

♦
You’ve seen two of the five functions connected with setting up the 
M

PI environm
ent.

int MPI_Init(int*argc, char***argv);
// initializes the environment

int MPI_Finalize()
// terminates the environment

int MPI_Abort( MPI_Comm comm, int errorcode );
// terminates all processes with the given error code

int MPI_Initialized( int *flag ) 
// sets the flag to true if MPI has been initialized

int MPI_Finalized( int *flag )
// sets the flag to true if MPI has been finalized
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O
btaining the rank and size

♦
M

PI num
bers the processes inside com

m
unicators

♦
By default one com

m
unicator, M

PI_CO
M

M
_W

O
RLD

 is created containing all 
processes.

#include <iostream>
#include <mpi.h>

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);
    int rank;
  int size;
    MPI_Comm_rank(MPI_COMM_WORLD,&rank);
  MPI_Comm_size(MPI_COMM_WORLD,&size);
    std::cout << "I am rank " << rank <<
               " of " << size << "." << std::endl;
    MPI_Finalize();
    return 0;
}

M
PI_CO

M
M
_W
O
RLD

0
1

2
3 4
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R
unning the exam

ple using O
pen M

PI: D
-PH

Y
S m

achines

♦
G

et the sources from
 the repository

♦
 Com

pile the program
:

♦
mpicxx -o hello1 hello1.cpp

♦
Run the program

 in parallel using 4 processes:

$ 
m
p
i
r
u
n
 
-
n
p
 
4
 
.
/
a
.
o
u
t
 

I am rank 1 of 4.
I am rank 2 of 4.
I am rank 0 of 4.
I am rank 3 of 4.
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Things to do on your ow
n m

achine

♦
Check if you already have a M

PI installation
♦

which m
picc

♦
In case you need to install it, try O

pen M
PI

♦
http://www.open-m

pi.org
♦

exam
ple of the installation is provided on the lecture hom

epage

♦
 To run it in parallel on m

ore than one m
achine

♦
Setup autom

atic authentication
♦

Use .rhosts with rsh
♦

Use authorization keys with ssh (details on http://nic.phys.ethz.ch) 
♦

Prepare a file with the nam
es of all PCs you want to use

♦
G

ive that file as argum
ent to m

pirun
♦

m
pirun -hostfile <filenam

e> (for O
pen M

PI)
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M
PI_Send and M

PI_R
ecv

♦
int 

M
P
I
_
S
e
n
d(void* buf, int count, MPI_Datatype type, int 

dest, int tag, MPI_Comm comm);
♦
buf …

 buffer containing data
♦
count …

 num
ber of elem

ents
♦
type …

 datatype (M
PI_BYTE is raw data)

♦
dest …

 destination num
ber

♦
tag …

 m
essage tag

♦
comm …

 com
m

unicator, M
PI_CO

M
M

_W
O

RLD is default
♦

int 
M
P
I
_
R
e
c
v(void* buf, int count, MPI_Datatype type, int 

source, int tag, MPI_Comm comm, MPI_Status* status)
♦
MPI_ANY_SOURCE and MPI_ANY_TAG are wildcards

♦
count …

 size of buffer available for m
essage

♦
status …

 returns inform
ation on the m

essage
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Probing for m
essages

♦
Instead of directly receiving you can probe whether a m

essage has arrived:

♦
The M

PI_Status object can be queried for inform
ation about the m

essage:

int 
M
P
I
_
P
r
o
b
e(int source, int tag, MPI_Comm comm, MPI_Status *status)

// wait for a matching message to arrive

int 
M
P
I
_
I
p
r
o
b
e(int source, int tag, MPI_Comm comm, int *flag, MPI_Status *status)

// check if a message has arrived. 
// flag is nonzero if there is a message waiting

int 
M
P
I
_
G
e
t
_
c
o
u
n
t(MPI_Status *status, MPI_Datatype datatype, int* count)

// gets the number of elements in the message waiting to be received

MPI_Status status;
int count;

// wait for a message
MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, &status);
std::cout << "A message is waiting from " << status->MPI_SOURCE
          << "with tag "                  << status->MPI_TAG;

// get the element count
MPI_Get_count(&status, MPI_INT, &count)
std::cout << "and assuming it contains ints there are " << count << "elements";
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D
eadlocks: deadlock1.cpp, deadlock2.cpp

♦
Consider synchronous com

m
unication:

♦
process 0:
M
P
I
_
S
s
e
n
d(&d,1,MPI_DOUBLE,1,tag,MPI_COMM_WORLD);

M
P
I
_
R
e
c
v(&d,1,MPI_DOUBLE,1,tag,MPI_COMM_WORLD,&status);

♦
process 1:
M
P
I
_
S
s
e
n
d(&d,1,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);

M
P
I
_
R
e
c
v(&d,1,MPI_DOUBLE,0,tag,MPI_COMM_WORLD,&status);

♦
will deadlock as both wait for reception of m

essage
♦

Solution:
♦

process 0:
M
P
I
_
R
e
c
v(&d,count,MPI_DOUBLE,1,tag,MPI_COMM_WORLD,&status);

M
P
I
_
S
s
e
n
d(&d,count,MPI_DOUBLE,1,tag,MPI_COMM_WORLD);

♦
process 1:
M
P
I
_
S
s
e
n
d(&d,count,MPI_DOUBLE,0,tag,MPI_COMM_WORLD);

M
P
I
_
R
e
c
v(buf2,count,MPI_DOUBLE,0,tag,MPI_COMM_WORLD,&status);

♦
Check for this in your code!
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C
ollective C

om
m

unication

♦
Com

m
unication between m

any processes can be optim
ized

♦
sim

ple form
 of broadcast

♦
step 1: 0 -> 1

♦
step 2: 0 -> 2

♦
…

♦
step N-1: 0 -> N

♦
optim

ized broadcast
♦

step 1: 0 -> 1
♦

step 2: 0 -> 2, 1 -> 3
♦

step 3: 0 -> 4, 1 -> 5, 2 -> 6, 3 -> 7
♦

step 4: 0 -> 8, 1 -> 9, 2 -> 10, 3 -> 11, 4 -> 12, 5 -> 13, 6 -> 14, …

♦
O

ptim
ized version in log

2 (N) instead of N steps!
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Types of collective com
m

unication

♦
Broadcast sends sam

e data to all processes 
♦

Scatter / G
ather

♦
scatter: caller sends n-th portion of data to n-th process

♦
gather: caller receives n-th portion of data from

 n-th process
♦

All-gather
♦

everyone receives n-th portion of data from
 n-th process

♦
All-to-all
♦

n-th process sends k-th portion to process k and receives n-th portion 
from

 process k; like a m
atrix transpose

♦
Reduce
♦

com
bines gather with operation (e.g. sum

 all portions)
♦

All-reduce, Reduce-scatter, …
♦

Barrier: waits for all processes to call it; for synchronization
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Scatter &
 G

ather

♦
The scatter operation sends a different piece of data to each of the 
ranks
♦

Exam
ple: take a vector and split it over the other ranks

♦
The gather operations collects data from

 the other ranks into a big 
buffer
♦

Exam
ple: gathering pieces of a distributed vector into a big local one

S
catter / G

ather 

S
catter 

P
0 

rcvbuf 

P
0 

a
1 

rcvbuf 

P
1 

a
2 

rcvbuf 

P
2 

a
3 

rcvbuf 

P
3 

a
4 

rcvbuf 

P
1 

P
2 

P
3 

P
0 

a
1 

a
2 

a
3 

a
4 

sndbuf 
sndbuf 

sndbuf 
sndbuf 

G
ather 

P
0 

a
2 

a
3 

a
1 

a
4 

sndbuf 

a
4 

a
3 

a
1 

a
2 

Im
age ©

 C
S

C
S
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A
ll-to-all

♦
M

PI_Alltoall: n-th rank sends k-th portion of its data to rank k and 
receives n-th portion from

 process k. 
♦

Everyone scatters and gather at the sam
e tim

e
♦

like a m
atrix transpose. Attention: slow!

Im
age ©

 C
S

C
S

M
P

I_A
lltoall 

P
0 

P
0 

P
0 

P
0 

P
0 

P
0 

P
0 

P
0 

a
4 

b
4 

c
4 

d
4 

a
4 

b
4 

c
4 

d
4 

a
3 

b
3 

c
3 

d
3 

a
3 

b
3 

c
3 

d
3 

a
2 

b
2 

c
2 

d
2 

a
2 

b
2 

c
2 

d
2 

a
1 

b
1 

c
1 

d
1 

a
1 

b
1 

c
1 

d
1 

Fortran: 

CALL MPI_ALLTOALL(sndbuf, sndcount, sndtype, rcvbuf, rcvcount, 
rcvtype, comm, ierr) 

U
seful, e.g., for data transposition 

rcvbuf 

sndbuf 
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SPM
D

 style

♦
All processes execute the sam

e program
: integrate1.cpp

♦
Exam

ple: Integration of a function f over [a,b[ on N processes

int main(int argc, char** argv) {
    // do some initialization
    ...
    // find interval for this process
    double interval=(b-a)/total;
    double start=a+interval*num;
    double end=start+interval;
    // partial integral between [start,end[
    double partial=integrate(sin,start,end,steps/total);
    
    // sum up partials
    double sum=0.;
    MPI_Allreduce(&partial,&sum,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
    
    // print and finish
    ...
}
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M
aster - Slave style

♦
O

ne process, the M
aster distributes tasks: integrate2.cpp

♦
O

ther processes (slaves) ask for tasks and perform
 them

♦
M

aster and slave can run different program
s!

void master()
{    // find tasks & distribute them
    ...
}void slave()
{    // ask master for tasks & perform them
    ...
}int main(int argc, char** argv) {
    ... // (init)
    if (rank==0)
        master();
    else
        slave();
    ...
}
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M
PI is m

uch m
ore than this

♦
W

e didn’t touch:
♦

Asynchronous, Non-blocking com
m

unication
♦

very im
portant to overly com

m
unication and com

putation
♦

O
ne-sided com

m
unication

♦
Custom

 datatypes
♦

Com
m

unicator subgroups
♦

etc.

♦
M

ore advanced lecture will have a m
ore detailed view

♦
High Perform

ance Com
puting for Science and Engineering
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D
ebugging a parallel program

♦
is very hard

♦
m

ain problem
 are deadlocks

♦
som

e graphical tools exist:
♦

xpvm
♦

xm
pi

♦
can help to understand what is going on

♦
O

pen M
PI explains how to use debuggers (gdb, totalview)

♦
http://www.open-m

pi.org/faq/?category=debugging

♦
Hints
♦

first write a working serial program
♦

Parallelize it and run it one one process first
♦

two processes next
♦

…
♦

G
ood luck!!!
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Scaling w
ith num

ber of processes: A
m

dahl’s law

♦
The sequential, non-parallel part will dom

inate the CPU tim
e!

♦
Assum

e N processes
♦

on one process: T
1  = T

serial +T
parallel

♦
on N processes: T

N  = T
serial +T

parallel /N+T
com

m
unication (N)

♦
define serial ratio s= T

serial /T
1

♦
Reduce serial parts
♦

The optim
um

 speedup would be

♦
even if 1%

 is serial it does not scale well beyond 100 processes!
current m

achines have >10000 processes!
♦

Reduce com
m

unication tim
e

♦
Try to keep T

com
m

unication as sm
all as possible

♦
O

verlay com
m

unication with com
putation

♦
M

ake a plot of the speedup vs. N for your program
!

sp
eed

u
p
=

T
1

sT
1
+
(1

�
s)T

1 /N
+

T
c
o
m
m
u
n
i
c
a
t
i
o
n


T

1

sT
1
+
(1

�
s)T

1 /N


1s
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