
Inheritance and Exceptions	

 Week 9	

Programming techniques	

 1	

An Introduction to C++ 	

Inheritance
Exceptions

A C++ review: from modular to generic programming

Inheritance	

  is another very important feature"
  it models the concept: 

objects of type B are the same as A, but in addition have…"
 Examples"

 A shape is a 2D figure which has an area and can be drawn, although
I know neither generally"

 A triangle is a shape, but its area is … and it looks like …"
 A square is a shape, but its area is … and it looks like …"
 A complex figure is a shape and consists of an array of shapes 
"

 A monoid is a semigroup, but in addition contains a unit element"
 A group is a monoid, but in addition has an inverse"

 A simulation can be run but I don’t know how generally"
 A Penna simulation is run this way …"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 2	

Abstract base classes	

 are good for expressing common ideas"
 We want to have a function that can run a simulation and print

some information:"
 void perform(Simulation& s) {

 std::cout << “Running the simulation “
 << s.name() << “\n”;
 s.run(); // run it 
}

 This class must have an name() and a run() member function"
 class Simulation{

public:
 Simulation () {};
 virtual std::string name() const =0;
 virtual void run() =0;
};

 virtual means that this function depends on concrete simulation"
 =0 means that this function must be provided for any concrete

simulation"

Concrete derived classes	

 PennaSim and IsingSim are both Simulations:"
 class PennaSim: public Simulation {

public:
 std::string name() const;
 void run();
};

 class IsingSim: public Simulation{
public:
 std::string name() const;
 void run()  
};

 Examples"
 Simulation x;  

// Error since it is abstract! name() and run() not defined"
 PennaSim p; // OK!
 IsingSim i; // OK!
 Simulation& sim=p; // also OK, since it is a reference!"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 3	

Using inheritance	

  recall the function void perform(Simulation&);
  let us call it for two simulations"

PennaSim p;
IsingSim i;

perform(p); // will use PennaSim::name() and PennaSim::run()
perform(i); // will use IsingSim::name() and IsingSim::run()  
"

 All virtual function can be redefined by derived class"
  In addition a derived class can define additional members 
"

 There exists a third access specifier: protected"
 means public for derived classes"
 means private for others"

The virtual function table	

 How does the program know the concrete type of an object?"
 The compiler creates a virtual function table (vtable) for each class"

 The table contains pointers to the functions"
 A pointer to that table is stored in the object, before the other

members"
 The program checks the virtual function table of the object for the

address of the function to call"
 Needs two memory accesses and cannot be inlined"

vtable of IsingSim
&IsingSim::name

&IsingSim::run

vtable of PennaSim
&PennaSim::name

&PennaSim::run

An object of type
PennaSim

Vtable pointer"

More data "
members"

An object of type
IsingSim

Vtable pointer"
More data "
members"

An object of type
Simulation

Vtable pointer"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 4	

Using templates instead	

 The same could be done with templates:"
 template <class SIMULATION>
void perform(SIMULATION& s) {
 std::cout << s.name() << “\n”;
 s.run();
}

 class PennaSim {
public:
 std::string name() const;
 void run();
};

 PennaSim p;
perform(p); // instantiates the template for PennaSim"

 But type of SIMULATION must be known at compile time!"

Comparing virtual functions and templates	

 Object Oriented Programming:"
 void perform(Simulation& s)
{
 s.run();
}

 Object needs to be derived from Simulation"
 Concrete type decided at runtime"

 Generic programming:"
 template <class SIM> void perform(SIM& s)
{
 s.run();
}"

 Object needs to have a run function"
 Concrete type decided at compile time"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 5	

Virtual functions versus templates	

Object oriented programming"
  uses virtual functions"
  decision at run-time"
  works for objects derived from the

common base"
  one function created for the base

class -> saves space"
  virtual function call needs lookup

in type table -> slower"
  extension possible using only

definition of base class 
"

 Most useful for application
frameworks, user interfaces,
“big” functions"

Generic programming"
  uses templates"
  decision at compile-time"
  works for objects having the right

members"
  a new function created for each

class used -> more space"
  no virtual function call, can be

inlined -> faster"
  extension needs definitions and

implementations of all functions"

  useful for small, low level
constructs, small fast functions
and generic algorithms"

When to use which?	

 Generic programming allows inlining"
 faster code  
"

 Object oriented programming more flexible"
 how to age an Array of animals of different types?  
 
void show(std::vector<Animal*> a) {
 for (int i=0; i<a.size(); ++i)
 a[i]->grow();
}

 This works for array of mixed animals, e.g. fish, sheep, …"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 6	

Example: random number generators	

 We want to be able to switch random number generators at
runtime: use virtual functions"

 First attempt: rng1.h"
 Make operator() a virtual function"
 Problem: virtual function calls are slow"

 Second attempt: rng2.h"
 Store a buffer of random numbers"
 operator() uses numbers from that buffer"
 Only when buffer is used up, a virtual function fill_buffer() is

called to create many random numbers"
 This reduces the cost of inheritance since the virtual function is called

only rarely"

Example: Penna model with fishing	

 The Penna population class was:"
 class Population {
 … constructors and more …
 void simulate(int years); // the full simulation
 void step(); // one year
}

 void Population::simulate(int years)
{
 while (years--)
 step();
}

 void Population::step()
{
 … lots of work to do one year …
}

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 7	

Example: Penna with fishing (part 2)	

 Now we want to do a new simulation with fishing"

 We want to reuse code and not copy&paste"

 class FishingPopulation : public Population
{
 … constructors …
 void step(); // one year
}

 void FishingPopulation::step()
{
 Population::step(); // do the normal aging
 … then implement fishing …
}

Example: Penna with fishing (part 3)	

 This will not do what we want since Population::simulate
does not call the step function of FishingPopulation

 void Population::simulate(int years)
{
 while (years--)
 step();
}"

 Solution: need to make step() a virtual function"
 class Population {
 … constructors and more …
 void simulate(int years); // the full simulation
 virtual void step(); // one year
}

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 8	

How to deal with runtime errors?	

 What should our integration library do if the user passes an illegal
argument?"
 Return 0?"
 Return infinity?"
 Abort?"
 Set an error flag?"

 Neither of these is ideal"
 Return values of 0 or infinity cannot be distinguished from good

results"
 Aborting the program is no good idea for mission critical programs"
 Error flags are rarely checked by the users"

 Solution"
 C++ exception handling"

C++ Exceptions 	

	

 The solution are exceptions"

 The library recognizes an error or other exceptional situation."
 It does not know how to deal with it"
 Thus it throws an exception"

 The calling program might be able to deal with the exception"
 It can catch the exception and do whatever is necessary"

  If an exception is not caught"
 The program terminates"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 9	

How to throw an exception	

 What is an exception?"
 An object of any type"

 Thrown using the throw keyword:"
 if(n<=0)

 throw "n too small";

 if(index >= size())
 throw std::range_error("index");

  Throwing the exception "
 causes the normal execution to terminate"
 The call stack is unwound, the functions are exited, all local objects destroyed"
 Until a catch clause is found"

The standard exception base class	

  Is in the header <exception>"
 class exception {
public:
 exception() throw();
 exception(const exception&) throw();
 exception& operator=(const exception&) throw();
 virtual ~exception() throw();
 virtual const char* what() const throw();
};

 The function qualifier throw() indicates that these functions do
not throw any exceptions

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 10	

The standard exceptions	

 are in <stdexcept>, all derived from std::exception"
 Logic errors (base class std::logic_error)"

 domain_error: value outside the domain of the variable
 invalid_argument: argument is invalid "
 length_error: size too big
 out_of_range: argument has invalid value

 Runtime errors (base class std::runtime_error)"
 range_error: an invalid value occurred as part of a calculation"
 overflow_error: a value got too large"
 underflow_error: a value got too small"

 All take a string as argument in the constructor"

Catching exceptions	

 Statements that might throw an exception are put into a try block"
 After it catch() clauses can catch some or all exceptions"
 Example:"

 int main()
{
 try {
 std::cout << integrate(sin,0,10,1000);
 }
 catch (std::exception& e) {
 std::cerr << "Error: " << e.what() << "\n";
 }
 catch(...) {// catch all other exceptions
 std::cerr << "A fatal error occurred.\n";
 }
}

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 11	

Exceptions example: main.C, simpson.h, simpson.C	

  int main() {

 bool done;
 do {
 done = true;
 try {
 double a,b;
 unsigned int n;
 std::cin >> a >> b >> n;
 std::cout << simpson(sin,a,b,n);
 }
 catch (std::range_error& e) {
 // also catches derived exceptions 
 std::cerr << "Range error: " << e.what() << "\n";
 done=false;
 }
 // all other exceptions go uncaught
 } while (!done);
}

More exception details	

 Exceptions and inheritance"
 A catch(ExceptionType& t) clause also catches exceptions

derived from ExceptionType"

 Rethrowing excpeptions"
 If a catch() clause decides it cannot deal with the exception it can re-

throw it with throw;

 More details in text books"
 Uncaught exceptions"
 throw() qualifiers"
 Exceptions thrown while dealing with an exception"
 Exceptions in destructors "

 Can be very bad since the destructor is not called!"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 12	

C++ review	

 Stack class"
 procedural"
 modular"
 object oriented"
 generic"

Procedural stack implementation: stack1.C	

void push(double*& s, double v)
{
 *s++=v;

}

double pop(double *&s)
{

 return *--s;
}

int main() {

double stack[1000];

double* p=stack;

push(p,10.);

std::cout << pop(p) << “\n”;
std::cout << pop(p) << “\n”;
// error of popping below
// beginning goes undetected!

}

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 13	

Modular stack implementation: stack2.C	

namespace Stack {
struct stack {

 double* s;

 double* p;

 int n;};

void init(stack& s, int l) {

 s.s=new double[l];

 s.p=s;

 s.n=l;}

void destroy(stack& s) {

 delete[] s.s;

}

void push(stack& s, double v) {
 if (s.p==s.s+s.n-1) throw

std::runtime_error(“overflow”);
 *s.p++=v;
}

double pop(stack& s) {

 if (s.p==s.s) throw
std::runtime_error(“underflow”);

 return *--s.p;

}

int main() {
Stack::stack s;

Stack::init(s,100); // must be called"
Stack::push(s,10.);
Stack::pop(s);

Stack::pop(s); // throws error
Stack::destroy(s); // must be called"
}

Object oriented stack implementation: stack3.C	

namespace Stack {
class stack {

 double* s;

 double* p;

 int n;

public:

 stack(int=1000); // like init"
 ~stack(); // like destroy
 void push(double);
 double pop();

};

int main() {
 Stack::stack s(100);"
 // initialization done automatically"
 s.push(10.);

 std::cout << s.pop();

 // destruction done automatically"
}

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 14	

Generic stack implementation: stack4.C	

namespace Stack {
template <class T>

class stack {

 T* s;

 T* p;

 int n;

public:

 stack(int=1000); // like init"
 ~stack(); // like destroy"
 void push(T);
 T pop();

};

int main() {
 Stack::stack<double> s(100);"
 // works for any type!"
 s.push(1.3);
 cout << s.pop();

}

Summary of Programming Styles	

 Procedural implementation"
 possible in all languages 
"

 Modular implementation"
 allows transparent change in underlying data structure without

breaking the user’s program. E.g. we can add range checks 
"

 Object oriented implementation"
 additionally makes sure that initialization and cleanup functions are

called whenever needed  
"

 Generic implementation"
 works for any data type"

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 15	

Review of the numerical integration exercise	

 The numerical integration exercise demonstrates all four
programming styles:"
 1st part: procedural programming"
 2nd part: modular programming"

 We built a library"
 3rd part generic programming"

 We uses templates"
 4th part: object oriented programming"

 We derive from a base class"

 After you have coded all four versions, perform benchmarks"
 Which version is fastest?"
 Which version is the most flexible?"

Procedural programming	

  double integrate(double (*f) (double),
 double a, double b, unsigned int N)
{
 double result=0;
 double x=a;
 double dx=(b-a)/N;
 for (unsigned int i=0; i<N; ++i, x+=dx)
 result +=f(x);
 return result*dx;
}

  double func(double x) {return x*sin(x);}
cout << integrate(func,0,1,100);

 same as in C, Fortran, etc."

Inheritance and Exceptions	

 Week 9	

Programming techniques	

 16	

Generic programming	

  template <class T, class F>
T integrate(F f, T a, T b, unsigned int N)
{
 T result=T(0);
 T x=a;
 T dx=(b-a)/N;
 for (unsigned int i=0; i<N; ++i, x+=dx)
 result +=f(x);
 return result*dx;
}

  struct func {
 double operator()(double x) { return x*sin(x); }
};
cout << integrate(func(),0.,1.,100);

 allows inlining!"
 works for any type T"

Object oriented programming	

  Class Integrator { // base class implements integration
 public: �
 Integrator() {}
 double integrate(double a, double b, unsigned int n);
 virtual double f(double)=0;
};

  class MyFunc : public Integrator { // derived class
public:
 MyFunc() {}
 double f(double x) {return x*sin(x);} //implements function 
};

  MyFunc f;
f.integrate(0,1,1000);"

