Algorithms and Data Structures in C++

Complexity analysis

- ◆ Answers the question "How does the time needed for an algorithm scale with the problem size N?"
 - ◆ Worst case analysis: maximum time needed over all possible inputs
 - Best case analysis: minimum time needed
 - Average case analysis: average time needed
 - ◆ Amortized analysis: average over a sequence of operations
- Usually only worst-case information is given since average case is much harder to estimate.

The O notation

Is used for worst case analysis:

An algorithm is O(f(N)) if there are constants c and N_0 , such that for $N \ge N_0$ the time to perform the algorithm for an input size N is bounded by t(N) < c f(N)

- Consequences
 - \bullet O(f(N)) is identically the same as O(a f(N))
 - $O(a N^x + b N^y)$ is identically the same as $O(N^{\max(x,y)})$
 - \bullet O(N^x) implies O(N^y) for all $y \ge x$

Notations

 \bullet Ω is used for best case analysis:

An algorithm is $\Omega(f(N))$ if there are constants c and N_0 , such that for $N \ge N_0$ the time to perform the algorithm for an input size N is bounded by t(N) > c f(N)

Θ is used if worst and best case scale the same

An algorithm is $\Theta(f(N))$ if it is $\Theta(f(N))$ and O(f(N))

Time assuming 1 billion operations per second (1Gop)

Complexity	N=10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
1	1 ns	1 ns	1 ns	1 ns	1 ns	1ns
In N	3 ns	7 ns	10 ns	13 ns	17 ns	20 ns
N	10 ns	100 ns	1 <i>µ</i> s	10 <i>μ</i> s	100 <i>μ</i> s	1 ms
N log N	33 ns	664 ns	10 <i>μ</i> s	133 µs	1.7 ms	20 ms
N ²	100 ns	10 <i>μ</i> s	1 ms	100 ms	10 s	17 min
N ³	1 <i>µ</i> s	1 ms	1 s	17 min	11.5 d	31 a
2 ^N	1 <i>µ</i> s	10 ¹⁴ a	10 ²⁸⁵ a	10 ²⁹⁹⁶ a	10 ³⁰⁰⁸⁶ a	10 ³⁰¹⁰¹³ a

Time assuming 10 petaoperations per second (10 Pop/s)

Assume a parallel machine with 10 peta operations per second and perfect parallelization but one operation still needs at least 1ns

Complexity	N=10	10 ²	10 ³	10 ⁶	10 ⁹	10 ¹²
Complexity	11-10	10-	10°	10*	10*	10
1	1 ns	1 ns	1 ns	1 ns	1 ns	1 ns
In N	1 ns	1 ns	1 ns	1 ns	1 ns	1 ns
N	1 ns	1 ns	1 ns	1ns	100 ns	100 <i>μ</i> s
N log N	1 ns	1 ns	1 <i>µ</i> s	1.33 ns	177 s	200 μs
N ²	1 ns	1 ns	1 ns	100 <i>μ</i> s	100 s	3a
N ³	1 ns	1 ns	100 ns	100 s	3000 a	10 ¹² a
2 ^N	1 ns	10 ⁷ a	10 ²⁷⁸ a			

Which algorithm do you prefer?

♦ When do you pick algorithm A, when algorithm B? The complexities are listed below

	1	
Algorithm A	Algorithm B	Which do you pick?
O(ln N)	O(N)	
O(ln N)	N	
O(ln N)	1000 N	
ln N	O(N)	
1000 ln N	O(N)	
ln N	N	
ln N	1000 N	
1000 ln <i>N</i>	N	

Complexity: example 1

lacktriangle What is the O, Ω and Θ complexity of the following code?

```
double x;
std::cin >> x;
std::cout << std::sqrt(x);</pre>
```

Complexity: example 2

lacktriangle What is the O, Ω and Θ complexity of the following code?

```
unsigned int n;
std::cin >> n;
for (int i=0; i<n; ++i)
   std::cout << i*i << "\n";</pre>
```

Complexity: example 3

 \bullet What is the O, Ω and Θ complexity of the following code?

```
unsigned int n;
std::cin >> n;
for (int i=0; i<n; ++i) {
  unsigned int sum=0;
  for (int j=0; j<i; ++j)
    sum += j;
  std::cout << sum << "\n";
}</pre>
```

Complexity: example 4

- lacktriangle What is the O, Ω and Θ complexity of the following two segments?
 - ◆ Part 1:

```
unsigned int n;
std::cin >> n;
double* x=new double[n]; // allocate array of n numbers
for (int i=0; i<n; ++i)
  std::cin >> x[i];
```

◆ Part 2:

```
double y;
std::cin >> y;
for (int i=0; i<n; ++i)
  if (x[i]==y) {
    std::cout << i << "\n";
    break;
}</pre>
```

Complexity: adding to an array (simple way)

- What is the complexity of adding an element to the end of an array?
 - allocate a new array with N+1 entries
 - copy N old entries
 - delete old arrray
 - ♦ write (N+1)-st element
- The complexity is O(N)

Complexity: adding to an array (clever way)

- What is the complexity of adding an element to the end of an array?
 - ◆ allocate a new array with 2N entries, but mark only N+1 as used
 - copy N old entries
 - delete old arrray
 - ◆ write (N+1)-st element
- ◆ The complexity is O(N), but let's look at the next elements added:
 - mark one more element as used
 - write additional element
- ◆ The complexity here is O(1)
- ◆ The amortized (averaged) complexity for N elements added is

$$\frac{1}{N} (O(N) + (N-1)O(1)) = O(1)$$

STL: Standard Template Library

- Most notable example of generic programming
- Widely used in practice
- ◆ Theory: Stepanov, Musser; Implementation: Stepanov, Lee

- Standard Template Library
 - ◆ Proposed to the ANSI/ISO C++ Standards Committee in 1994.
 - ◆ After small revisions, part of the official C++ standard in 1997.

The string and wstring classes

- are very useful class to manipulate strings
 - string for standard ASCII strings (e.g. "English")
 - ◆wstring for wide character strings (e.g. "日本語")
- Contains many useful functions for string manipulation
 - Adding strings
 - Counting and searching of characters
 - Finding substrings
 - Erasing substrings
 - **♦** ...
- ◆ Since this is not very important for numerical simulations I will not go into details. Please read your C++ book

The pair template

```
template <class T1, class T2> class pair {
  public:
    T1 first;
    T2 second;
    pair(const T1& f, const T2& s)
    : first(f), second(s)
    {}
};
```

will be useful in a number of places

Data structures in C++

- We will discuss a number of data structures and their implementation in C++:
- Arrays:
 - C array
 - vector
 - ◆ valarray
 - ♦ deque
- Linked lists:
 - ♦ list

- ◆ Trees
 - ◆ map
 - ◆ set
 - lack multimap
 - ♦ multiset
- Queues and stacks
 - queue
 - priority_queue
 - ◆ stack

The array or vector data structure

◆ An array/vector is a consecutive range in memory

- Advantages
 - ◆ Fast O(1) access to arbitrary elements: a [i] is * (a+i)
 - Profits from cache effects
 - ◆ Insertion or removal at the end is O(1)
 - ◆ Searching in a sorted array is O(ln N)
- Disadvantage
 - lacktriangle Insertion and removal at arbitrary positions is O(N)

Slow O(N) insertion and removal in an array

- Inserting an element
 - ◆ Need to copy O(N) elements

- Removing an element
 - ◆ Also need to copy O(N) elements

The deque data structure (double ended queue)

- ♦ Is a variant of an array, more complicated to implement
 - See a data structures book for details
- ◆ In addition to the array operations also the insertion and removal at beginning is O(1)
- ♦ Is needed to implement queues

The stack data structure

- ♦ Is like a pile of books
 - ◆ LIFO (last in first out): the last one in is the first one out
- ♦ Allows in O(1)
 - Pushing an element to the top of the stack
 - Accessing the top-most element
 - ◆ Removing the top-most element

The queue data structure

- ♦ Is like a queue in the Mensa
 - ◆ FIFO (first in first out): the first one in is the first one out
- ♦ Allows in O(1)
 - Pushing an element to the end of the queue
 - ◆ Accessing the first and last element
 - ◆ Removing the first element

The priority queue data structure

- ◆ Is like a queue in the Mensa, but professors are allowed to go to the head of the queue (not passing other professors though)
 - ◆ The element with highest priority (as given by the < relation) is the first one out
 - ◆ If there are elements with equal priority, the first one in the queue is the first one out
- There are a number of possible implementations, look at a data structure book for details

The linked list data structure

 An linked list is a collection of objects linked by pointers into a onedimensional sequence

- Advantages
 - ◆ Fast O(1) insertion and removal anywhere
 - ◆ Just reconnect the pointers
- Disadvantage
 - ◆ Does not profit from cache effects
 - ◆ Access to an arbitrary element is O(N)
 - ◆ Searching in a list is O(N)

The tree data structures

- ◆ An array needs
 - \bullet O(N) operations for arbitrary insertions and removals
 - ◆ O(1) operations for random access
 - \bullet O(N) operations for searches
 - \bullet O(ln N) operations for searches in a sorted array
- A list needs
 - ◆ O(1) operations for arbitrary insertions and removals
 - \bullet O(N) operations for random access and searches
- ♦ What if both need to be fast? Use a tree data structure:
 - ◆ O(ln N) operations for arbitrary insertions and removals
 - ◆ O(ln N) operations for random access and searches

A node in a binary tree

- Each node is always linked to two child nodes
 - ◆ The left child is always smaller
 - ◆ The right child node is always larger

A binary tree

- ◆ Can store N=2ⁿ⁻¹ nodes in a tree of height n
 - ♦ Any access needs at most $n = O(\ln N)$ steps
- Example: a tree of height 5 with 12 nodes

Unbalanced trees

- ◆ Trees can become unbalanced
 - ◆ Height is no longer O(ln N) but O(N)
 - ◆ All operations become O(N)
- Solutions
 - Rebalance the tree
 - ◆ Use self-balancing trees
- ◆ Look into a data structures book to learn more

Tree data structures in the C++ standard

- ◆ Fortunately the C++ standard contains a number of self-balancing tree data structures suitable for most purposes:
 - set
 - ◆ multiset
 - **♦** map
 - ◆ multimap
- But be aware that computer scientists know a large number of other types of trees and data structures
 - Read the books
 - Ask the experts

The container concept in the C++ standard

- Containers are sequences of data, in any of the data structures
 - vector<T> is an array of elements of type T
 - ◆ list<T> is a doubly linked list of elements of type T
 - set<T> is a tree of elements of type T

. . .

- The standard assumes the following requirements for the element T of a container:
 - ◆ default constructor T ()
 - ◆ assignment T& operator=(const T&)
 - ◆ copy constructor T (const T&)
 - ◆ Note once again that assignment and copy have to produce identical copy: in the Penna model the copy constructor should not mutate!

Connecting Algorithms to Sequences

```
find(s, x) := pos \leftarrow start of s while pos not at end of s if element at pos in s == x return pos pos \leftarrow next position return pos

int find( char const(&s)[4], char x) {

int pos = 0; while (pos!= sizeof(s)) {

if (s[pos] == x) return pos; ++pos; }

return pos; }

return pos; }
```

Connecting Algorithms to Sequences

```
find( s, x ) :=

pos ← start of s

while pos not at end of s

if element at pos in s == x

return pos

pos ← next position

return pos

char* find(char const(&s)[4], char x)

{
 char* pos = s;
 while (pos != s + sizeof(s))

{
 if (*pos == x)
 return pos;
 ++pos;
 }
 return pos;
}
```

Connecting Algorithms to Sequences find(s, x) := $pos \leftarrow start of s$ while pos not at end of sif element at pos in s == xstruct node char value; node* next; $\begin{array}{c} \text{return } pos \\ pos \leftarrow \text{next position} \\ \text{return pos} \end{array}$ return pos **}**; node* find(node* const s, char x) char* find(char const(&s)[4], char x) node* pos = s; while (pos != 0) char* pos = s; while (pos != s + sizeof(s)) if (pos->value == x) return pos; if (*pos == x) return pos; pos = pos->next; ++pos; return pos; return pos; } }

F. T. S. E.

<u>Fundamental Theorem of Software Engineering</u>

"We can solve any problem by introducing an extra level of indirection"

--Butler Lampson

Iterators to the Rescue

- Define a common interface for
 - traversal
 - access
 - positional comparison
- Containers provide iterators
- Algorithms operate on pairs of iterators

Describe Concepts for std::find

```
template <class Iter, class T>
Iter find(Iter start, Iter finish, T x)
{
    Iter pos = start;
    for (; pos != finish; ++pos)
    {
        if (*pos == x)
            return pos;
    }
    return pos;
}
```

- Concept Name?
- Valid expressions?
- Preconditions?
- Postconditions?
- Complexity guarantees?
- Associated types?

Traversing an array and a linked list

- ◆ Two ways for traversing an array ◆ Traversing a linked list
 - Using an index:

```
T* a = new T[size];
for (int n=0;n<size;++n)
  cout << a[n];</pre>
```

Using pointers:

accumulate

```
template <class T> struct node
{
    T value; // the element
    node<T>* next; // the next Node
};

template<class T> struct list
{
    node<T>* first;
};
list<T> 1;
...
for (mode<T>* p=l.first;
    p!=0;
    p=p->next)
    cout << p->value;
```

6. char[5]

M. foobar

1. find 2. copy 3. merge 4. transform 4. set 5. map

Programming techniques for scientific simulations

Generic traversal

- Can we traverse a vector and a list in the same way?
- Instead of

We want to write

```
for (iterator p = a.begin();
    p !=a.end();
    ++p)
cout << *p;</pre>
```

Instead of

```
for (node<T>* p=l.first;
    p!=0;
    p=p->next)
cout << p->value;
```

We want to write

Implementing iterators for the array

```
template<class T>
                         Now allows the desired syntax:
 class Array {
 public:
  typedef unsigned size_type; a.begin();
                              p !=a.end();
  Array();
                               ++p)
  Array(size_type);
                             cout << *p;
  iterator begin()
   { return p ; }
                        Instead of
   iterator end()
   { return p_+sz_;}
                           for (T*p = a.p_;
                              p !=a.p_+a.sz_;
 private:
                               ++p)
  T* p_;
                            cout << *p;
   size_type sz_;
```

Implementing iterators for the linked list

```
template <class T>
 emplate <class T>
    struct node_iterator {
    Node<T>* p;
    Node<T>* first;
 node(T) p,
node_iterator(Node<T>* q)
: p(q) {}
                               public:
                                  typedef node iterator<T> iterator;
 { p=p->next; }
                                  { return iterator(first);}
  T* operator ->()
                               iterator end()
{ return iterator(0);}
  { return & (p->value);}
  T& operator*()
  { return p->value;}
                               ◆ Now also allows the desired syntax:
  bool operator!=(const
     node_iterator<T>& x) for (List<T>::iterator p = 1.begin();
                                  p !=1.end();
  { return p!=x.p;}
                                   ++p)
  // more operators missing ...
                                cout << *p;
```

Iterators

- have the same functionality as pointers
- including pointer arithmetic!
 - ♦ iterator a,b; cout << b-a; // # of elements in [a,b]</p>
- exist in several versions
 - ♦ forward iterators ... move forward through sequence
 - ◆ backward iterators ... move backwards through sequence
 - ◆ bidirectional iterators ... can move any direction
 - ♦ input iterators ... can be read: x=*p;
 - output iterators ... can be written: *p=x;
- and all these in const versions (except output iterators)

Container requirements

◆ There are a number of requirements on a container that we will now discuss based on the handouts

Containers and sequences

- ◆ A container is a collection of elements in a data structure
- A sequence is a container with a linear ordering (not a tree)
 - vector
 - deque
 - list
- ◆ An associative container is based on a tree, finds element by a key
 - map
 - multimap
 - set
 - multiset
- ◆ The properties are defined on the handouts from the standard
 - ◆ A few special points mentioned on the slides

Sequence constructors

- ◆ A sequence is a linear container (vector, deque, list,...)
- Constructors
 - ◆ container() ... empty container
 - container (n) ... n elements with default value
 - ◆ container(n,x) ... n elements with value x
 - container(c) ... copy of container c
 - ◆ container(first, last) ... first and last are iterators
 - ◆ container with elements from the range [first,last]
- Example:
 - std::list<double> 1;
 // fill the list
 ...
 // copy list to a vector
 std::vector<double> v(l.begin(),l.end());

Direct element access in deque and vector

- Optional element access (not implemented for all containers)
 - ◆ T& container[k] ... k-th element, no range check
 - ◆ T& container.at(k) ... k-th element, with range check
 - ◆ T& container.front() ... first element
 - ◆ T& container.back() ... last element

Inserting and removing at the beginning and end

- For all sequences: inserting/removing at end
 - ◆ container.push back(T x) // add another element at end
 - ◆ container.pop back() // remove last element
- ◆ For list and deque (stack, queue)
 - ◆ container.push first(T x) // insert element at start
 - ◆ container.pop_first() // remove first element

Inserting and erasing anywhere in a sequence

- ◆ List operations (slow for vectors, deque etc.!)
 - ◆insert (p,x) // insert x before p
 - ♦ insert (p,n,x) // insert n copies of x before p
 - ◆ insert(p, first, last) // insert [first, last] before p
 - erase(p) // erase element at p
 - erase(first,last) // erase range[first,last[
 - clear() // erase all

Vector specific operations

- Changing the size
 - ◆void resize(size type)
 - ◆void reserve(size type)
 - ◆size_type capacity()
- Note:
 - reserve and capacity regard memory allocated for vector!
 - ◆ resize and size regard memory currently used for vector data
- Assignments
 - ◆ container = c ... copy of container c
 - ◆ container.assign(n) ...assign n elements the default value
 - ◆ container.assign(n,x) ... assign n elements the value x
 - container.assign(first,last) ... assign values from the range
 [first,last]
- Watch out: assignment does not allocate, do a resize before!

The valarray template

- acts like a vector but with additional (mis)features:
 - No iterators
 - No reserve
 - Resize is fast but erases contents
- for numeric operations are defined:

```
std::valarray<double> x(100), y(100), z(100); x=y+exp(z);
```

- ◆ Be careful: it is not the fastest library!
- ◆ We will learn about faster libraries later

Sequence adapters: queue and stack

- are based on deques, but can also use vectors and lists
 - ◆ stack is first in-last out
 - queue is first in-first out
 - priority_queue prioritizes with < operator</pre>
- stack functions
 - ◆ void push (const T& x) ... insert at top
 - ◆ void pop() ... removes top
 - ◆ T& top()
 - ◆ const T& top() const
- queue functions
 - ◆ void push (const T& x) ... inserts at end
 - ◆ void pop() ... removes front
 - ◆ T& front(), T& back(), const T& front(), const T& back()

list -specific functions

- The following functions exist only for std::list:
 - ◆ splice
 - ♦ joins lists without copying, moves elements from one to end of the other
 - ♦ sort
 - optimized sort, just relinks the list without copying elements
 - merge
 - ◆ preserves order when "splicing" sorted lists
 - → remove(T x)
 - remove if(criterion)
 - ◆ criterion is a function object or function, returning a bool and taking a const T& as argument, see Penna model
 - ◆ example:

```
bool is_negative(const T& x) { return x<0;}</pre>
```

◆ can be used like

```
list.remove if (is negative);
```

The map class

implements associative arrays

- is implemented as a tree of pairs
- Take care:
 - ♠ map<T1,T2>::value type is pair<T1,T2>
 - → map<T1,T2>::key type is T1
 - ◆ map<T1,T2>::mapped type is T2
 - ♦ insert, remove, ... are sometimes at first sight confusing for a map!

Other tree-like containers

- ◆ multimap
 - ◆ can contain more than one entry (e.g. phone number) per key
- ♦ set
 - unordered container, each entry occurs only once
- ♦ multiset
 - unordered container, multiple entries possible
- extensions are no problem
 - if a data structure is missing, just write your own
 - good exercise for understanding of containers

Search operations in trees

- In a map<K,V>, K is the key type and V the mapped type
 Attention: iterators point to pairs
- In a map<T>, T is the key type and also the value_type
- Fast O(log N) searches are possible in trees:
 - a.find(k) returns an iterator pointing to an element with key k or end() if it is not found.
 - a.count(k) returns the number of elements with key k.
 - ◆ a.lower_bound(k) returns an iterator pointing to the first element with key >= k.
 - a.upper_bound(k) returns an iterator pointing to the first element with key > k.
 - ◆ a.equal_range(k) is equivalent to but faster than std::make_pair(a.lower_bound(k), a.upper_bound(k))

Search example in a tree

Look for all my phone numbers:

Almost Containers

- C-style array
- string
- ♦ valarray
- bitset
- ◆ They all provide almost all the functionality of a container
- ◆ They can be used like a container in many instances, but not all
 - ♦ int x[5] = {3,7,2,9,4}; vector<int> v(x,x+5);
 - uses vector (first, last), pointers are also iterators!

The generic algorithms

- ◆ Implement a big number of useful algorithms
- Can be used on any container
 - rely only on existence of iterators
 - "container-free algorithms"
 - now all the fuss about containers pays off!
- Very useful
- Are an excellent example in generic programming
- We will use them now for the Penna model That's why we did not ask you to code the Population class for the Penna model yet!

Example: find

- ◆ A generic function to find an element in a container:
 - hlist<string> fruits;
 list<string>::const_iterator found =
 find(fruits.begin(),fruits.end(),"apple");
 if (found==fruits.end()) // end means invalid iterator
 cout << "No apple in the list";
 else
 cout << "Found it: " << *found << "\n";</pre>
- find declared and implemented as
 - ◆template <class In, class T>
 In find(In first, In last, T v) {
 while (first != last && *first != v)
 ++first;
 return first;
 }

Example: find if

- takes predicate (function object or function)
 - ◆ bool favorite_fruits(const std::string& name)
 { return (name=="apple" || name == "orange");}
- can be used with find_if function:
 - hlist<string>::const_iterator found =
 find_if(fruits.begin(), fruits.end(), favorite_fruits);
 if (found==fruits.end())
 cout << "No favorite fruits in the list";
 else
 cout << "Found it: " << *found << "\n";</pre>
- find_if declared and implemented as as
 - template <class In, class Pred>
 In find_if(In first, In last, Pred p) {
 while (first != last && !p(*first))
 ++first;
 return first;
 }

Member functions as predicates

- We want to find the first pregnant animal:
 - ♦ list<Animal> pop;
 find if(pop.begin(),pop.end(),is pregnant)
- This does not work as expected, it expects
 - ◆bool is pregnant(const Animal&);
- We want to use
 - ♦ bool Animal::pregnant() const
- ◆ Solution: mem_fun_ref function adapter

- Many other useful adapters available
 - ◆ Once again: please read the books before coding your own!

push back and back inserter

- Attention:
 - vector<int> v,w;
 for (int k=0;k<100;++k) {
 v[k]=k; //error: v is size 0!
 w.push_back(k); // OK:grows the array and assigns
 }</pre>
- Same problem with copy:
 - ◆ vector<int> v(100), w(0); copy(v.begin(),v.end(),w.begin()); // problem: w of size 0!
- Solution1: vectors only
 - w.resize(v.size()); copy(v.begin(),v.end(),w.begin());
- Solution 2: elegant
 - copy(v.begin(),v.end(),back_inserter(w)); // uses push_back
- also push_front and front_inserter for some containers

Penna Population

- easiest modeled as
 - ◆ class Population : public list<Animal> {...}
- Removing dead:
 - ◆ remove if(mem fun ref(&Animal::is dead));
- Removing dead, and others with probability N/N0:
 - ◆ remove if(animal dies(N/N0));
 - ♦ where animal dies is a function object taking N/N0 as parameter
- Inserting children:
 - cannot go into same container, as that might invalidate iterators:

```
vector<Animal> children;
for(const_iterator a=begin();a!=end();++a)
  if(a->pregnant())
    children.push_back(a->child());
copy(children.begin(),children.end(),
    back inserter(*this);
```

The binary search

- ◆ Searching using binary search in a sorted vector is O(ln N)
- Binary search is recursive search in range [begin,end]
 - If range is empty, return
 - ◆ Otherwise test middle=begin+(end-begin)/2
 - ♦ If the element in the middle is the search value, we are done
 - ◆ If it is larger, search in [begin,middle]
 - ♦ If it is smaller, search in [middle,end]
- ◆ The search range is halved in every step and we thus need at most O(ln N) steps

Example: lower_bound

```
template<class IT, class T>
IT lower bound(IT first, IT last, const T& val) {
 typedef typename iterator_traits<IT>::difference_type dist_t;
 dist t len = distance(first, last); // generic function for last-first
 dist t half;
 IT middle;
 while (len > 0) {
   half = len >> 1; // faster version of half=len/2
   middle = first;
   advance(middle, half); // generic function for middle+=half
   if (*middle < val) {</pre>
     first = middle;
      ++first;
      len = len - half - 1;
   else
      len = half;
  return first;
```

Algorithms overview

Nonmodifying

- for_each
- find, find_if,
 find first of
- adjacent find
- ◆ count, count if
- ♦ mismatch
- ♦ equal
- search
- find_end
- search_n

Modifying

- ◆ transform
- ◆ copy, copy_backward
- swap, iter_swap,
 swap_ranges
- replace, replace_if,
 replace_copy,
 replace_copy if
- ♦ fill, fill n
- ◆ generate, generate_n
- ◆ remove, remove_if, remove_copy, remove_copy_if
- unique, unique_copy
- reverse, reverse_copy
- → rotate, rotate_copy
- random_shuffle

Algorithms overview (continued)

- Sorted Sequences

 - ◆ lower bound, upper bound
 - equal range
 - ♦ binary search
 - ◆ merge, inplace merge
 - partition, stable partition
- Permutations
 - ◆ next permutation
 - ◆ prev permutation

- Set Algorithms
 - ♦ includes
 - ♦ set union
 - ◆ set intersection
 - ◆ set difference
 - ◆ set symmetric difference
- Minimum and Maximum
 - ♦ min
 - ♦ max
 - ♦ min_element
 - ◆ max element
 - ♦ lexicographical compare

Exercise

- Code the population class for the Penna model based on a standard container
- Use function objects to determine death
- In the example we used a loop.
 - Can you code the population class without using any loop?
 - ◆ This would increase the reliability as the structure is simpler!
- Also add fishing in two variants:
 - fish some percentage of the whole population
 - fish some percentage of adults only
- Read Penna's papers and simulate the Atlantic cod! Physica A, 215, 298 (1995)

stream iterators and Shakespeare

- Iterators can also be used for streams and files.
 - ◆istream iterator
 - ◆ostream iterator
- Now you should be able to understand Shakespeare:

Summary

- Please read the sections on
 - containers
 - iterators
 - algorithms
- in Stroustrup or Lippman (3rd editions only!)
- Examples of excellent class and function designs
- Before writing your own functions and classes: Check the standard C++ library!
- When writing your own functions/classes:
 Try to emulate the design of the standard library
- Don't forget to include the required headers:
 - ◆ <algorithm>, <functional>, <map>, <iterators>, ... as needed