
Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 1	

Algorithms and Data Structures in C++	

Complexity analysis	

 Answers the question “How does the time needed for an algorithm
scale with the problem size N?”"
 Worst case analysis: maximum time needed over all possible inputs"
 Best case analysis: minimum time needed"
 Average case analysis: average time needed"
 Amortized analysis: average over a sequence of operations"

 Usually only worst-case information is given since average case is
much harder to estimate."

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 2	

The O notation	

  Is used for worst case analysis: 
 
An algorithm is O(f (N)) if there are constants c and N0, such that for
N≥ N0 the time to perform the algorithm for an input size N is
bounded by t(N) < c f(N)���
	

 Consequences "
 O(f(N)) is identically the same as O(a f(N))	

 O(a Nx + b Ny) is identically the same as O(Nmax(x,y))"
 O(Nx) implies O(Ny) for all y ≥ x	

Notations	

 Ω is used for best case analysis: 
 
An algorithm is Ω (f (N)) if there are constants c and N0, such that
for N≥ N0 the time to perform the algorithm for an input size N is
bounded by t(N) > c f(N)���
	

 Θ is used if worst and best case scale the same  
 
 An algorithm is Θ (f (N)) if it is Θ (f (N)) and O(f (N)) "

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 3	

Time assuming 1 billion operations per second (1Gop)	

Complexity" N=10" 102" 103" 104" 105" 106"

1" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns" 1ns"

ln N" 3 ns" 7 ns" 10 ns" 13 ns" 17 ns" 20 ns"

N" 10 ns" 100 ns" 1 µs" 10 µs" 100 µs" 1 ms"

N log N" 33 ns" 664 ns" 10 µs" 133 µs" 1.7 ms" 20 ms"

N2" 100 ns" 10 µs" 1 ms" 100 ms" 10 s" 17 min"

N3" 1 µs" 1 ms" 1 s" 17 min" 11.5 d" 31 a"

2N" 1 µs" 1014 a" 10285 a" 102996 a" 1030086 a" 10301013 a"

Time assuming 10 petaoperations per second (10 Pop/s)	

Complexity" N=10" 102" 103" 106! 109! 1012!

1" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns"

ln N" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns"

N" 1 ns" 1 ns" 1 ns" 1ns" 100 ns" 100 µs"

N log N" 1 ns" 1 ns" 1 µs" 1.33 ns" 177 s" 200 µs"

N2" 1 ns" 1 ns" 1 ns" 100 µs" 100 s" 3a"

N3" 1 ns" 1 ns" 100 ns" 100 s" 3000 a" 1012 a"

2N" 1 ns" 107 a" 10278 a"

Assume a parallel machine with 10 peta operations per second and perfect ���
parallelization but one operation still needs at least 1ns	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 4	

Which algorithm do you prefer?	

 When do you pick algorithm A, when algorithm B? The complexities are
listed below "

Algorithm A" Algorithm B" Which do you pick?"
O(ln N)	

 O(N)	

O(ln N)	

 N	

O(ln N)	

 1000 N	

ln N	

 O(N)	

1000 ln N	

 O(N)	

ln N	

 N	

ln N	

 1000 N	

1000 ln N	

 N	

Complexity: example 1	

 What is the O, Ω and Θ complexity of the following code?  

double x;
std::cin >> x;
std::cout << std::sqrt(x);

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 5	

Complexity: example 2	

 What is the O, Ω and Θ complexity of the following code?  

unsigned int n;
std::cin >> n;
for (int i=0; i<n; ++i)
 std::cout << i*i << “\n”;

Complexity: example 3	

 What is the O, Ω and Θ complexity of the following code?  

unsigned int n;
std::cin >> n;
for (int i=0; i<n; ++i) {
 unsigned int sum=0;
 for (int j=0; j<i; ++j)
 sum += j;
 std::cout << sum << “\n”;
}

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 6	

Complexity: example 4	

 What is the O, Ω and Θ complexity of the following two segments?"
 Part 1: 
unsigned int n;
std::cin >> n;
double* x=new double[n]; // allocate array of n numbers
for (int i=0; i<n; ++i)
 std::cin >> x[i];

 Part 2: 
double y;
std::cin >> y;
for (int i=0; i<n; ++i)
 if (x[i]==y) {
 std::cout << i << “\n”;
 break;
 }

Complexity: adding to an array (simple way)	

 What is the complexity of adding an element to the end of an
array?"
 allocate a new array with N+1 entries"
 copy N old entries"
 delete old arrray"
 write (N+1)-st element"

 The complexity is O(N)"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 7	

Complexity: adding to an array (clever way)	

 What is the complexity of adding an element to the end of an
array?"
 allocate a new array with 2N entries, but mark only N+1 as used"
 copy N old entries"
 delete old arrray"
 write (N+1)-st element"

 The complexity is O(N), but let’s look at the next elements added:"
 mark one more element as used"
 write additional element"

 The complexity here is O(1)"
 The amortized (averaged) complexity for N elements added is"

�

1
N

O(N) + (N −1)O(1)() = O(1)

STL: Standard Template Library	

 Most notable example of generic programming"
 Widely used in practice"
 Theory: Stepanov, Musser; Implementation: Stepanov, Lee"
"

 Standard Template Library"
 Proposed to the ANSI/ISO C++ Standards Committee in 1994."
 After small revisions, part of the official C++ standard in 1997."

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 8	

sequence algorithms	

accumulate, inner_product,	

find, reverse, …	

sort, merge, …	

your algorithm	

data sequences	

	

	

	

	

	

builtin arrays,	

iostreams,	

your data structure	

function objects	

negate, plus, multiplies, … 	

your function	

	

	

	

	

predicates	

less, greater, equal_to, …	

your predicate	

allocators	

allocator	

your allocator	

containers	

list, vector, deque	

map, set, …	

your container	

container adapters	

stack, queue, priority_queue	

The standard C++ library	

The string and wstring classes	

 are very useful class to manipulate strings"
 string for standard ASCII strings (e.g. “English”)"
 wstring for wide character strings (e.g. “日本語”)"

 Contains many useful functions for string manipulation"
 Adding strings"
 Counting and searching of characters"
 Finding substrings"
 Erasing substrings"
 …"

 Since this is not very important for numerical simulations I will not
go into details. Please read your C++ book"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 9	

The pair template	

 template <class T1, class T2> class pair {
public:
 T1 first;
 T2 second;
 pair(const T1& f, const T2& s)
 : first(f), second(s)
 {}
};
"

 will be useful in a number of places"

Data structures in C++	

 We will discuss a number of data structures and their implementation
in C++:"

  Arrays: "

 C array"
 vector
 valarray
 deque

  Linked lists: "

 list

  Trees"

 map
 set
 multimap
 multiset

 Queues and stacks

 queue
 priority_queue
 stack"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 10	

 An array/vector is a consecutive range in memory"

 Advantages"
 Fast O(1) access to arbitrary elements: a[i] is *(a+i)"
 Profits from cache effects"
 Insertion or removal at the end is O(1)"
 Searching in a sorted array is O(ln N)"

 Disadvantage"
 Insertion and removal at arbitrary positions is O(N)"

The array or vector data structure	

  Inserting an element"
 Need to copy O(N) elements"

 Removing an element"
 Also need to copy O(N) elements"

Slow O(N) insertion and removal in an array	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

x	

a	

 b	

 c	

 e	

 f	

 g	

 h	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 11	

 Removing the last element"
 Just change the size"

 Capacity 8, size 6:"

 Capacity 8, size 5:"

  Inserting elements at the end"
 Is amortized O(1)"

 first double the size and copy in O(N):"

 then just change the size:"

Fast O(1) removal and insertion at the end of an array	

a	

 b	

 c	

 d	

 e	

 f	

a	

 b	

 c	

 d	

a	

 b	

 c	

 d	

 e	

spare 	

elements	

a	

 b	

 c	

 d	

 e	

a	

 b	

 c	

 d	

 e	

 f	

a	

 b	

 c	

 d	

 e	

 f	

 g	

The deque data structure (double ended queue)	

  Is a variant of an array, more complicated to implement"
 See a data structures book for details"

  In addition to the array operations also the insertion and removal at
beginning is O(1)	

  Is needed to implement queues"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 12	

The stack data structure	

  Is like a pile of books"
 LIFO (last in first out): the last one in is the first one out"

 Allows in O(1)"
 Pushing an element to the top of the stack"
 Accessing the top-most element"
 Removing the top-most element" in	

 out	

The queue data structure	

  Is like a queue in the Mensa"
 FIFO (first in first out): the first one in is the first one out"

 Allows in O(1)"
 Pushing an element to the end of the queue"
 Accessing the first and last element"
 Removing the first element"

in	

out	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 13	

The priority queue data structure	

  Is like a queue in the Mensa, but professors are allowed to go to
the head of the queue (not passing other professors though)"

 The element with highest priority (as given by the < relation) is the first
one out"

 If there are elements with equal priority, the first one in the queue is
the first one out"

 There are a number of possible implementations, look at a data
structure book for details"

 An linked list is a collection of objects linked by pointers into a one-
dimensional sequence"

 Advantages"
 Fast O(1) insertion and removal anywhere"

 Just reconnect the pointers"

 Disadvantage"
 Does not profit from cache effects"
 Access to an arbitrary element is O(N)"
 Searching in a list is O(N)"

The linked list data structure	

head	

 tail	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 14	

The tree data structures	

 An array needs"
 O(N) operations for arbitrary insertions and removals"
 O(1) operations for random access"
 O(N) operations for searches"
 O(ln N) operations for searches in a sorted array"

 A list needs"
 O(1) operations for arbitrary insertions and removals"
 O(N) operations for random access and searches"

 What if both need to be fast? Use a tree data structure:"
 O(ln N) operations for arbitrary insertions and removals"
 O(ln N) operations for random access and searches"

A node in a binary tree	

 Each node is always linked to two child nodes"
 The left child is always smaller"
 The right child node is always larger"

m	

d	

 s	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 15	

A binary tree	

  Can store N=2n-1 nodes in a tree of height n!
 Any access needs at most n = O(ln N) steps!

  Example: a tree of height 5 with 12 nodes"

m	

d	

 s	

b	

 g	

 n	

 x	

a	

 i	

 w	

 y	

z	

root	

leaf	

branch	

 Trees can become unbalanced"
 Height is no longer O(ln N) but O(N)"
 All operations become O(N)"

 Solutions"
 Rebalance the tree"
 Use self-balancing trees"

 Look into a data structures book to learn more"

Unbalanced trees	

a	

b	

c	

d	

e	

f	

g	

h	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 16	

Tree data structures in the C++ standard	

 Fortunately the C++ standard contains a number of self-balancing
tree data structures suitable for most purposes:"
 set
 multiset
 map
 multimap

 But be aware that computer scientists know a large number of
other types of trees and data structures"
 Read the books"
 Ask the experts"

The container concept in the C++ standard	

 Containers are sequences of data, in any of the data structures"

 vector<T> is an array of elements of type T"
 list<T> is a doubly linked list of elements of type T"
 set<T> is a tree of elements of type T 

…"

 The standard assumes the following requirements for the element
T of a container:"
 default constructor T()"
 assignment T& operator=(const T&)"
 copy constructor T(const T&)
 Note once again that assignment and copy have to produce identical

copy: in the Penna model the copy constructor should not mutate!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 17	

find(s, x) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"
"

Connecting Algorithms to Sequences	

struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find(node* const s, char x)"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if (pos->value == x)"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"

int find(char const(&s)[4], char x)"
{"
 int pos = 0;"
 while (pos != sizeof(s))"
 {"
 if (s[pos] == x)"
 return pos;"
 ++pos;"
 }"
 return pos;"
}"

char* find(char const(&s)[4], char x)"
{"
"char* pos = s;"
"while (pos != s + sizeof(s))"
"{"
" "if (*pos == x)"
" " "return pos;"
" "++pos;"
"}"
"return pos;"

}"

find(s, x) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"

Connecting Algorithms to Sequences	

struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find(node* const s, char x)"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if (pos->value == x)"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 18	

char* find(char const(&s)[4], char x)"
{"
"char* pos = s;"
"while (pos != s + sizeof(s))"
"{"
" "if (*pos == x)"
" " "return pos;"
" "++pos;"
"}"
"return pos;"

}"

find(s, x) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"

Connecting Algorithms to Sequences	

struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find(node* const s, char x)"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if (pos->value == x)"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"

F. T. S. E.	

Fundamental Theorem of Software Engineering

" ""We can solve any problem by introducing an extra level
of indirection"!
!!
! ! !--Butler Lampson!
!"

Andrew Koenig

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 19	

Iterators to the Rescue	

 Define a common interface for"
 traversal"
 access"
 positional comparison"

 Containers provide iterators"
 Algorithms operate on pairs of iterators"

template <class Iter, class T>	

Iter find(Iter start, Iter finish, T x)	

{	

 Iter pos = start;	

 for (; pos != finish; ++pos)	

 {	

 if (*pos == x)	

 return pos;	

 }	

 return pos;	

}	

struct node_iterator	

{	

 // ...	

 char& operator*() const	

 { return n->value; }	

	

 node_iterator& operator++()	

 { n = n->next; return *this; }	

private:	

 node* n;	

};	

Describe Concepts for std::find	

template <class Iter, class T>"
Iter find(Iter start, Iter finish, T x)"
{"
"Iter pos = start;"
"for (; pos != finish; ++pos)"
"{"
" "if (*pos == x)"
" " "return pos;!
"}"
"return pos;"

}"

  Concept Name?"
  Valid expressions? "
  Preconditions?"
  Postconditions? "
  Complexity guarantees? "
  Associated types?"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 20	

Traversing an array and a linked list	

  Two ways for traversing an array 
"
 Using an index:"

T* a = new T[size];

for (int n=0;n<size;++n)

 cout << a[n];

 Using pointers:"

for (T* p = a;
 p !=a+size;

 ++p)
cout << *p;

"

  Traversing a linked list"

template <class T> struct node
{

T value; // the element
node<T>* next; // the next Node"

};

template<class T> struct list
{

node<T>* first;
};
list<T> l;
…
for (mode<T>* p=l.first;

 p!=0;
 p=p->next)
 cout << p->value;

NxM Algorithm Implementations?	

1.  find"
2.  copy"
3.  merge"
4.  transform"" " "."" " "."" " "."
N. "accumulate"

1.  vector"
2.  list"
3.  deque"
4.  set"
5.  map"
6.  char[5]"" "."" "."" "."
M. "foobar"
"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 21	

Generic traversal 	

  Can we traverse a vector and a
list in the same way?"

  Instead of"
for (T* p = a;

 p !=a+size;
 ++p)
cout << *p;

 We want to write"

for (iterator p = a.begin();

 p !=a.end();
 ++p)
cout << *p;

  Instead of"
 for (node<T>* p=l.first;
 p!=0;
 p=p->next)
 cout << p->value;

 We want to write"

for (iterator p = l.begin();

 p !=l.end();
 ++p)
cout << *p;

Implementing iterators for the array	

template<class T>
class Array {
public:
 typedef T* iterator;
 typedef unsigned size_type;
 Array();
 Array(size_type);

 iterator begin()
 { return p_;}
 iterator end()
 { return p_+sz_;}

private:
 T* p_;
 size_type sz_;
};

  Now allows the desired syntax:"

for (Array<T>::iterator p =
a.begin();

 p !=a.end();
 ++p)
cout << *p;

  Instead of 

for (T* p = a.p_;

 p !=a.p_+a.sz_;
 ++p)
cout << *p;

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 22	

Implementing iterators for the linked list	

template <class T>
struct node_iterator {
Node<T>* p;
node_iterator(Node<T>* q)

 : p(q) {}

node_iterator<T>& operator++()
{ p=p->next;}

T* operator ->()
{ return &(p->value);}

T& operator*()
{ return p->value;}

bool operator!=(const
 node_iterator<T>& x)
{ return p!=x.p;}

// more operators missing …
};

template<class T>
class list {
 Node<T>* first;
public:
 typedef node_iterator<T> iterator;

 iterator begin()
 { return iterator(first);}

 iterator end()
 { return iterator(0);}
};

 Now also allows the desired syntax:"

for (List<T>::iterator p = l.begin();

 p !=l.end();
 ++p)
cout << *p;

Iterators	

 have the same functionality as pointers 
"

  including pointer arithmetic!"
 iterator a,b; cout << b-a; // # of elements in [a,b[ 
"

 exist in several versions"
 forward iterators … move forward through sequence"
 backward iterators … move backwards through sequence"
 bidirectional iterators … can move any direction"
 input iterators … can be read: x=*p;
 output iterators … can be written: *p=x;
"

 and all these in const versions (except output iterators)"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 23	

Container requirements	

 There are a number of requirements on a container that we will
now discuss based on the handouts"

Containers and sequences	

 A container is a collection of elements in a data structure"

 A sequence is a container with a linear ordering (not a tree)"
 vector"
 deque"
 list"

 An associative container is based on a tree, finds element by a key"
 map"
 multimap"
 set"
 multiset"

 The properties are defined on the handouts from the standard"
 A few special points mentioned on the slides"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 24	

Sequence constructors	

 A sequence is a linear container (vector, deque, list,…)"

 Constructors"
 container() … empty container"
 container(n) … n elements with default value"
 container(n,x) … n elements with value x"
 container(c) … copy of container c"
 container(first,last) … first and last are iterators"

 container with elements from the range [first,last["

 Example:"
 std::list<double> l;

// fill the list
…
// copy list to a vector
std::vector<double> v(l.begin(),l.end());

Direct element access in deque and vector	

 Optional element access (not implemented for all containers)"
 T& container[k] … k-th element, no range check"
 T& container.at(k) … k-th element, with range check"
 T& container.front() … first element"
 T& container.back() … last element"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 25	

Inserting and removing at the beginning and end	

 For all sequences: inserting/removing at end"
 container.push_back(T x) // add another element at end"
 container.pop_back() // remove last element"

 For list and deque (stack, queue)"
 container.push_first(T x) // insert element at start"
 container.pop_first() // remove first element"

"

Inserting and erasing anywhere in a sequence	

 List operations (slow for vectors, deque etc.!)"
 insert (p,x) // insert x before p"
 insert(p,n,x) // insert n copies of x before p
 insert(p,first,last) // insert [first,last[before p"
 erase(p) // erase element at p
 erase(first,last) // erase range[first,last[
 clear() // erase all"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 26	

Vector specific operations	

 Changing the size"
 void resize(size_type)
 void reserve(size_type)
 size_type capacity()

 Note:"
 reserve and capacity regard memory allocated for vector!"
 resize and size regard memory currently used for vector data"

  Assignments"
 container = c … copy of container c"
 container.assign(n) …assign n elements the default value"
 container.assign(n,x) … assign n elements the value x"
 container.assign(first,last) … assign values from the range

[first,last["
 Watch out: assignment does not allocate, do a resize before!"

The valarray template	

 acts like a vector but with additional (mis)features:"
 No iterators"
 No reserve"
 Resize is fast but erases contents"

  for numeric operations are defined: 
 
std::valarray<double> x(100), y(100), z(100);
x=y+exp(z);
"
 Be careful: it is not the fastest library!"
 We will learn about faster libraries later"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 27	

Sequence adapters: queue and stack	

 are based on deques, but can also use vectors and lists"
 stack is first in-last out"
 queue is first in-first out"
 priority_queue prioritizes with < operator"

 stack functions"
 void push(const T& x) … insert at top"
 void pop() … removes top"
 T& top()
 const T& top() const"

 queue functions"
 void push(const T& x) … inserts at end"
 void pop() … removes front"
 T& front(), T& back(),  
const T& front(), const T& back()"

list -specific functions	

 The following functions exist only for std::list:"
 splice"

  joins lists without copying, moves elements from one to end of the other"
 sort"

 optimized sort, just relinks the list without copying elements"
 merge"

 preserves order when “splicing” sorted lists"
 remove(T x)
 remove_if(criterion)"

 criterion is a function object or function, returning a bool and taking a const T& as
argument, see Penna model"

 example:"
bool is_negative(const T& x) { return x<0;}"

 can be used like"
list.remove_if(is_negative);"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 28	

The map class	

  implements associative arrays"
 map<std::string,long> phone_book;
phone_book[“Troyer”] = 32589;
phone_book[“Heeb”] = 32591;
if(phone_book[name])
 cout << “The phone number of “ << name << “ is “
 << phone_book[name];
else
 cout << name << “\’s phone number is unknown!’;"

  is implemented as a tree of pairs"
 Take care:"

 map<T1,T2>::value_type is pair<T1,T2>
 map<T1,T2>::key_type is T1
 map<T1,T2>::mapped_type is T2"
 insert, remove, … are sometimes at first sight confusing for a map!"

Other tree-like containers	

 multimap"
 can contain more than one entry (e.g. phone number) per key"

 set"
 unordered container, each entry occurs only once"

 multiset"
 unordered container, multiple entries possible  
"

 extensions are no problem"
 if a data structure is missing, just write your own"
 good exercise for understanding of containers"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 29	

Search operations in trees	

  In a map<K,V>, K is the key type and V the mapped type"
 Attention: iterators point to pairs"

  In a map<T>, T is the key type and also the value_type"

 Fast O(log N) searches are possible in trees:"
 a.find(k) returns an iterator pointing to an element with key k or

end() if it is not found."
 a.count(k) returns the number of elements with key k."
 a.lower_bound(k) returns an iterator pointing to the first element

with key >= k."
 a.upper_bound(k) returns an iterator pointing to the first element

with key > k."
 a.equal_range(k) is equivalent to but faster than  
std::make_pair(a.lower_bound(k) , a.upper_bound(k))"

"

Search example in a tree	

  Look for all my phone numbers:"
  // some typedefs 

typedef multimap<std::string, int> phonebook_t;
typedef phonebook_t::const_iterator IT;
typedef phonebook_t::value_type value_type;

// the phonebook
phonebook_t phonebook;

// fill the phonebook 
phonebook.insert(value_type(“Troyer”,32589));
…

// search all my phone numbers  
pair< IT,IT> range = phonebook.equal_range(“Troyer”);

// print all my phone numbers  
for (IT it=range.first; it != range.second;++it)
 cout << it->second << “\n”;

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 30	

Almost Containers	

 C-style array"
 string"
 valarray"
 bitset"

 They all provide almost all the functionality of a container"
 They can be used like a container in many instances, but not all"

 int x[5] = {3,7,2,9,4};
vector<int> v(x,x+5); "

 uses vector(first,last), pointers are also iterators!"

The generic algorithms	

  Implement a big number of useful algorithms 
"

 Can be used on any container"
 rely only on existence of iterators"
 “container-free algorithms”"
 now all the fuss about containers pays off! 
"

 Very useful  
"

 Are an excellent example in generic programming  
"

 We will use them now for the Penna model  
That’s why we did not ask you to code the Population class for the
Penna model yet!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 31	

Example: find 	

	

 A generic function to find an element in a container:"
 list<string> fruits;
list<string>::const_iterator found =
 find(fruits.begin(),fruits.end(),”apple”);
if (found==fruits.end()) // end means invalid iterator 
 cout << “No apple in the list”;
else
 cout << “Found it: “ << *found << “\n”;

 find declared and implemented as"
 template <class In, class T>
 In find(In first, In last, T v) {
 while (first != last && *first != v)
 ++first;
 return first;
 }

Example: find_if 	

  takes predicate (function object or function)"
 bool favorite_fruits(const std::string& name)

{ return (name==“apple” || name == “orange”);}

 can be used with find_if function:"
 list<string>::const_iterator found =

 find_if(fruits.begin(),fruits.end(),favorite_fruits);
if (found==fruits.end())
 cout << “No favorite fruits in the list”;
else
 cout << “Found it: “ << *found << “\n”;

 find_if declared and implemented as as"
 template <class In, class Pred>

 In find_if(In first, In last, Pred p) {
 while (first != last && !p(*first))
 ++first;
 return first;
}

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 32	

Member functions as predicates	

 We want to find the first pregnant animal:"
 list<Animal> pop;
find_if(pop.begin(),pop.end(),is_pregnant) 
"

 This does not work as expected, it expects"
 bool is_pregnant(const Animal&);"

 We want to use "
 bool Animal::pregnant() const  
"

 Solution: mem_fun_ref function adapter"
 find_if(pop.begin(),pop.end(),
 mem_fun_ref(&Animal::pregnant));  
"

 Many other useful adapters available"
 Once again: please read the books before coding your own!"

push_back and back_inserter	

 Attention:"
 vector<int> v,w;
for (int k=0;k<100;++k){
 v[k]=k; //error: v is size 0!
 w.push_back(k); // OK:grows the array and assigns 
}"

 Same problem with copy:"
 vector<int> v(100), w(0);
copy(v.begin(),v.end(),w.begin()); // problem: w of size 0!"

 Solution1: vectors only"
 w.resize(v.size()); copy(v.begin(),v.end(),w.begin()); "

 Solution 2: elegant"
 copy(v.begin(),v.end(),back_inserter(w)); // uses push_back"

 also push_front and front_inserter for some containers "

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 33	

Penna Population	

 easiest modeled as "
 class Population : public list<Animal> {…}"

 Removing dead:"
 remove_if(mem_fun_ref(&Animal::is_dead));"

 Removing dead, and others with probability N/N0:"
 remove_if(animal_dies(N/N0));"
 where animal_dies is a function object taking N/N0 as parameter"

  Inserting children: "
 cannot go into same container, as that might invalidate iterators: 

vector<Animal> children;
for(const_iterator a=begin();a!=end();++a)
 if(a->pregnant())
 children.push_back(a->child());
copy(children.begin(),children.end(),
 back_inserter(*this);"

The binary search	

 Searching using binary search in a sorted vector is O(ln N)	

 Binary search is recursive search in range [begin,end[

 If range is empty, return"
 Otherwise test middle=begin+(end-begin)/2"

 If the element in the middle is the search value, we are done"
 If it is larger, search in [begin,middle["
 If it is smaller, search in [middle,end[

 The search range is halved in every step and we thus need at most
O(ln N) steps	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 34	

Example: lower_bound	

 template<class IT, class T>
 IT lower_bound(IT first, IT last, const T& val) {
 typedef typename iterator_traits<IT>::difference_type dist_t;
 dist_t len = distance(first, last); // generic function for last-first
 dist_t half;
 IT middle;
 while (len > 0) {
 half = len >> 1; // faster version of half=len/2
 middle = first;

 advance(middle, half);// generic function for middle+=half"
 if (*middle < val) {
 first = middle;

 ++first;
 len = len - half - 1;

 }
 else

 len = half;
}

 return first;
 }

Algorithms overview	

  Nonmodifying"
 for_each
 find, find_if,

find_first_of

 adjacent_find
 count, count_if
 mismatch
 equal
 search
 find_end
 search_n

 Modifying"
 transform
 copy, copy_backward
 swap, iter_swap,

swap_ranges

 replace, replace_if,
replace_copy,
replace_copy_if

 fill, fill_n
 generate, generate_n
 remove, remove_if,

remove_copy,
remove_copy_if

 unique, unique_copy
 reverse, reverse_copy
 rotate, rotate_copy
 random_shuffle"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 35	

Algorithms overview (continued)	

  Sorted Sequences"
 sort,stable_sort
 partial_sort,

partial_sort_copy

 nth_element
 lower_bound, upper_bound
 equal_range
 binary_search
 merge, inplace_merge
 partition,

stable_partition
"

  Permutations"
 next_permutation
 prev_permutation

  Set Algorithms"
 includes
 set_union
 set_intersection
 set_difference
 set_symmetric_difference
"

 Minimum and Maximum"
 min
 max
 min_element
 max_element
 lexicographical_compare

Exercise	

 Code the population class for the Penna model based on a
standard container"

 Use function objects to determine death  
"

  In the example we used a loop. "
 Can you code the population class without using any loop?"
 This would increase the reliability as the structure is simpler! 
"

 Also add fishing in two variants:"
 fish some percentage of the whole population"
 fish some percentage of adults only"

 Read Penna's papers and simulate the Atlantic cod!  
Physica A, 215, 298 (1995)"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 36	

stream iterators and Shakespeare	

  Iterators can also be used for streams and files"
 istream_iterator
 ostream_iterator
"

 Now you should be able to understand Shakespeare: 
 
int main()
 {
 vector<string> data;
 copy(istream_iterator<string>(cin),istream_iterator<string>(),
 back_inserter(data));
 sort(data.begin(), data.end());
 unique_copy(data.begin(),data.end(),ostream_iterator<string>(cout,"\n"));
}

Summary	

 Please read the sections on"
 containers"
 iterators"
 algorithms"

  in Stroustrup or Lippman (3rd editions only!) 
"

 Examples of excellent class and function designs"
 Before writing your own functions and classes: 

Check the standard C++ library!"
 When writing your own functions/classes: 

Try to emulate the design of the standard library"
 Don't forget to include the required headers:"

 <algorithm>, <functional>, <map>, <iterators>, … as needed"

