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Algorithms and Data Structures in C++	



Complexity analysis	



 Answers the question “How does the time needed for an algorithm 
scale with the problem size N?”"
 Worst case analysis: maximum time needed over all possible inputs"
 Best case analysis: minimum time needed"
 Average case analysis: average time needed"
 Amortized analysis: average over a sequence of operations"

 Usually only worst-case information is given since average case is 
much harder to estimate."
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The O notation	



  Is used for worst case analysis: 
 
An algorithm is O(f (N)) if there are constants c and N0, such that for 
N≥ N0 the time to perform the algorithm for an input size N is 
bounded by t(N) < c f(N)���
	



 Consequences "
 O(f(N)) is identically the same as O(a f(N))	


 O(a Nx + b Ny) is identically the same as O(Nmax(x,y))"
 O(Nx) implies O(Ny) for all y ≥ x	



Notations	



 Ω is used for best case analysis: 
 
An algorithm is Ω (f (N)) if there are constants c and N0, such that 
for N≥ N0 the time to perform the algorithm for an input size N is 
bounded by t(N) > c f(N)���
	



 Θ is used if worst and best case scale the same  
 
 An algorithm is Θ (f (N)) if it is Θ (f (N)) and O(f (N)) "
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Time assuming 1 billion operations per second (1Gop)	



Complexity" N=10" 102" 103" 104" 105" 106"

1" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns"  1ns"

ln N" 3 ns" 7 ns" 10 ns" 13 ns" 17 ns" 20 ns"

N" 10 ns" 100 ns" 1 µs" 10 µs" 100 µs" 1 ms"

N log N" 33 ns" 664 ns" 10 µs" 133 µs" 1.7 ms" 20 ms"

N2" 100 ns" 10 µs" 1 ms" 100 ms" 10 s" 17 min"

N3" 1 µs" 1 ms" 1 s" 17 min" 11.5 d" 31 a"

2N" 1 µs" 1014 a" 10285 a" 102996 a" 1030086 a" 10301013 a"

Time assuming 10 petaoperations per second (10 Pop/s)	



Complexity" N=10" 102" 103" 106! 109! 1012!

1" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns"  1 ns"

ln N" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns"

N" 1 ns" 1 ns" 1 ns" 1ns" 100 ns" 100 µs"

N log N" 1 ns" 1 ns" 1 µs" 1.33 ns" 177 s" 200 µs"

N2" 1 ns" 1 ns" 1 ns" 100 µs" 100 s" 3a"

N3" 1 ns" 1 ns" 100 ns" 100 s" 3000 a" 1012 a"

2N" 1 ns" 107 a" 10278 a"

Assume a parallel machine with 10 peta operations per second and perfect ���
parallelization but one operation still needs at least 1ns	
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Which algorithm do you prefer?	



 When do you pick algorithm A, when algorithm B? The complexities are 
listed below "

Algorithm A" Algorithm B" Which do you pick?"
O(ln N)	

 O(N)	



O(ln N)	

 N	



O(ln N)	

 1000 N	



ln N	

 O(N)	



1000 ln N	

 O(N)	



ln N	

 N	



ln N	

 1000 N	



1000 ln N	

 N	



Complexity: example 1	



 What is the O, Ω  and Θ complexity of the following code?  
 
double x; 
std::cin >> x; 
std::cout << std::sqrt(x); 
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Complexity: example 2	



 What is the O, Ω  and Θ complexity of the following code?  
 
unsigned int n; 
std::cin >> n; 
for (int i=0; i<n; ++i) 
  std::cout << i*i << “\n”; 

Complexity: example 3	



 What is the O, Ω  and Θ complexity of the following code?  
 
unsigned int n; 
std::cin >> n; 
for (int i=0; i<n; ++i) { 
  unsigned int sum=0; 
  for (int j=0; j<i; ++j) 
    sum += j;  
  std::cout << sum << “\n”; 
} 
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Complexity: example 4	



 What is the O, Ω  and Θ complexity of the following two segments?"
 Part 1: 
unsigned int n; 
std::cin >> n; 
double* x=new double[n]; // allocate array of n numbers 
for (int i=0; i<n; ++i) 
  std::cin >> x[i]; 
 

 Part 2: 
double y; 
std::cin >> y; 
for (int i=0; i<n; ++i) 
  if (x[i]==y) { 
    std::cout << i << “\n”; 
    break; 
  } 
 

Complexity: adding to an array (simple way)	



 What is the complexity of adding an element to the end of an 
array?"
 allocate a new array with N+1 entries"
 copy N old entries"
 delete old arrray"
 write (N+1)-st element"

 The complexity is O(N)"
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Complexity: adding to an array (clever way)	



 What is the complexity of adding an element to the end of an 
array?"
 allocate a new array with 2N entries, but mark only N+1 as used"
 copy N old entries"
 delete old arrray"
 write (N+1)-st element"

 The complexity is O(N), but let’s look at the next elements added:"
 mark one more element as used"
 write additional element"

 The complexity here is O(1)"
 The amortized (averaged) complexity for N elements added is"

� 

1
N

O(N) + (N −1)O(1)( ) = O(1)

STL: Standard Template Library	



 Most notable example of generic programming"
 Widely used in practice"
 Theory: Stepanov, Musser; Implementation: Stepanov, Lee"
"

 Standard Template Library"
 Proposed to the ANSI/ISO C++ Standards Committee in 1994."
 After small revisions, part of the official C++ standard in 1997."
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sequence algorithms	


accumulate, inner_product,	



find, reverse, …	


sort, merge, …	


your algorithm	



data sequences	


	


	


	


	


	


builtin arrays,	


iostreams,	


your data structure	



function objects	


negate, plus, multiplies, …  	


your function	


	


	


	


	



predicates	


less, greater, equal_to, …	


your predicate	



allocators	


allocator	


your allocator	



containers	


list, vector, deque	


map, set, …	


your container	



container adapters	


stack, queue, priority_queue	



The standard C++ library	



The string and wstring classes	



 are very useful class to manipulate strings"
 string for standard ASCII strings (e.g. “English”)"
 wstring for wide character strings (e.g. “日本語”)"

 Contains many useful functions for string manipulation"
 Adding strings"
 Counting and searching of characters"
 Finding substrings"
 Erasing substrings"
 …"

 Since this is not very important for numerical simulations I will not 
go into details. Please read your C++ book"



Data structures and algorithms in the  C++ 
standard library	



Weeks 7&8	



Programming techniques for scientific 
simulations	

 9	



The pair template	



 template <class T1, class T2> class pair { 
public: 
  T1 first; 
  T2 second; 
  pair(const T1& f, const T2& s) 
   : first(f), second(s) 
  {} 
}; 
"

 will be useful in a number of places"

Data structures in C++	



 We will discuss a number of data structures and their implementation 
in C++:"

  Arrays: "

 C array"
 vector 
 valarray 
 deque 

  Linked lists: "

 list 

  Trees"

 map 
 set 
 multimap 
 multiset 

 Queues and stacks 

 queue 
 priority_queue 
 stack"
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 An array/vector is a consecutive range in memory"

 Advantages"
 Fast O(1) access to arbitrary elements: a[i] is *(a+i)"
 Profits from cache effects"
 Insertion or removal at the end is O(1)"
 Searching in a sorted array is O(ln N)"

 Disadvantage"
 Insertion and removal at arbitrary positions is O(N)"

The array or vector data structure	



  Inserting an element"
 Need to copy O(N) elements"

 Removing an element"
 Also need to copy O(N) elements"

Slow O(N) insertion and removal in an array	



a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	



a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	



x	



a	

 b	

 c	

 e	

 f	

 g	

 h	



a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	
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 Removing the last element"
 Just change the size"

 Capacity 8, size 6:"

 Capacity 8, size 5:"

  Inserting elements at the end"
 Is amortized O(1)"

 first double the size and copy in O(N):"

 then just change the size:"

Fast O(1) removal and insertion at the end of an array	



a	

 b	

 c	

 d	

 e	

 f	



a	

 b	

 c	

 d	



a	

 b	

 c	

 d	

 e	



spare 	


elements	



a	

 b	

 c	

 d	

 e	



a	

 b	

 c	

 d	

 e	

 f	



a	

 b	

 c	

 d	

 e	

 f	

 g	



The deque data structure (double ended queue)	



  Is a variant of an array, more complicated to implement"
 See a data structures book for details"

  In addition to the array operations also the insertion and removal at 
beginning is O(1)	



  Is needed to implement queues"
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The stack data structure	



  Is like a pile of books"
 LIFO (last in first out): the last one in is the first one out"

 Allows in O(1)"
 Pushing an element to the top of the stack"
 Accessing the top-most element"
 Removing the top-most element" in	

 out	



The queue data structure	



  Is like a queue in the Mensa"
 FIFO (first in first out): the first one in is the first one out"

 Allows in O(1)"
 Pushing an element to the end of the queue"
 Accessing the first and last element"
 Removing the first element"

in	



out	
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The priority queue data structure	



  Is like a queue in the Mensa, but professors are allowed to go to 
the head of the queue (not passing other professors though)"

 The element with highest priority (as given by the < relation) is the first 
one out"

 If there are elements with equal priority, the first one in the queue is 
the first one out"

 There are a number of possible implementations, look at a data 
structure book for details"

 An linked list is a collection of objects linked by pointers into a one-
dimensional sequence"

 Advantages"
 Fast O(1) insertion and removal anywhere"

 Just reconnect the pointers"

 Disadvantage"
 Does not profit from cache effects"
 Access to an arbitrary element is O(N)"
 Searching in a list is O(N)"

The linked list data structure	



head	

 tail	
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The tree data structures	



 An array needs"
 O(N) operations for arbitrary insertions and removals"
 O(1) operations for random access"
 O(N) operations for searches"
 O(ln N) operations for searches in a sorted array"

 A list needs"
 O(1) operations for arbitrary insertions and removals"
 O(N) operations for random access and searches"

 What if both need to be fast? Use a tree data structure:"
 O(ln N) operations for arbitrary insertions and removals"
 O(ln N) operations for random access and searches"

A node in a binary tree	



 Each node is always linked to two child nodes"
 The left child is always smaller"
 The right child node is always larger"

m	



d	

 s	
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A binary tree	



  Can store N=2n-1 nodes in a tree of height n!
 Any access needs at most n = O(ln N) steps!

  Example: a tree of height 5 with 12 nodes"

m	



d	

 s	



b	

 g	

 n	

 x	



a	

 i	

 w	

 y	



z	



root	



leaf	



branch	



 Trees can become unbalanced"
 Height is no longer O(ln N) but O(N)"
 All operations become O(N)"

 Solutions"
 Rebalance the tree"
 Use self-balancing trees"

 Look into a data structures book to learn more"

Unbalanced trees	



a	



b	



c	



d	



e	



f	



g	



h	
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Tree data structures in the C++ standard	



 Fortunately the C++ standard contains a number of self-balancing 
tree data structures suitable for most purposes:"
 set 
 multiset 
 map 
 multimap 

 But be aware that computer scientists know a large number of 
other types of trees and data structures"
 Read the books"
 Ask the experts"

The container concept in the C++ standard	



 Containers are sequences of data, in any of the data structures"

 vector<T> is an array of elements of type T"
 list<T> is a doubly linked list of elements of type T"
 set<T> is a tree of elements of type T 

…"

 The standard assumes the following requirements for the element 
T of a container:"
 default constructor T()"
 assignment T& operator=(const T&)"
 copy constructor T(const T&) 
 Note once again that assignment and copy have to produce identical 

copy: in the Penna model the copy constructor should not mutate!"
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find( s, x ) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"
"

Connecting Algorithms to Sequences	



struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find( node* const s, char x )"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if ( pos->value == x )"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"

int find( char const(&s)[4], char x )"
{"
    int pos = 0;"
    while (pos != sizeof(s))"
    {"
        if ( s[pos] == x )"
            return pos;"
        ++pos;"
    }"
    return pos;"
}"

char* find(char const(&s)[4], char x)"
{"
"char* pos = s;"
"while (pos != s + sizeof(s))"
"{"
" "if ( *pos == x )"
" " "return pos;"
" "++pos;"
"}"
"return pos;"

}"

find( s, x ) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"

Connecting Algorithms to Sequences	



struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find( node* const s, char x )"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if ( pos->value == x )"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"
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char* find(char const(&s)[4], char x)"
{"
"char* pos = s;"
"while (pos != s + sizeof(s))"
"{"
" "if ( *pos == x )"
" " "return pos;"
" "++pos;"
"}"
"return pos;"

}"

find( s, x ) :="
!pos  start of s"
"while pos not at end of s"
" "if element at pos in s == x!
" " "return pos!
! !pos  next position!
"return pos"

"

Connecting Algorithms to Sequences	



struct node"
{"
"char value;"
"node* next;"

};"
"
"
"
node* find( node* const s, char x )"
{"
"node* pos = s;"
"while (pos != 0)"
"{"
" "if ( pos->value == x )"
" " "return pos;!
! !pos = pos->next;!
"}"
"return pos;"

}"

F. T. S. E.	



Fundamental Theorem of Software Engineering 
 

" ""We can solve any problem by introducing an extra level 
of indirection"!
!!
! ! !--Butler Lampson!
!"

Andrew Koenig 
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Iterators to the Rescue	



 Define a common interface for"
 traversal"
 access"
 positional comparison"

 Containers provide iterators"
 Algorithms operate on pairs of iterators"

template <class Iter, class T>	


Iter find( Iter start, Iter finish, T x )	


{	


    Iter pos = start;	


    for (; pos != finish; ++pos)	


    {	


        if ( *pos == x )	


            return pos;	


    }	


    return pos;	


}	



struct node_iterator	


{	


    // ...	


    char& operator*() const	


    { return n->value; }	


	


    node_iterator& operator++()	


    { n = n->next; return *this; }	


private:	


    node* n;	


};	



Describe Concepts for std::find	



template <class Iter, class T>"
Iter find(Iter start, Iter finish, T x)"
{"
"Iter pos = start;"
"for (; pos != finish; ++pos)"
"{"
" "if ( *pos == x )"
" " "return pos;!
"}"
"return pos;"

}"

  Concept Name?"
  Valid expressions? "
  Preconditions?"
  Postconditions? "
  Complexity guarantees? "
  Associated types?"
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Traversing an array and a linked list	



  Two ways for traversing an array 
"
 Using an index:"

T* a = new T[size]; 

for (int n=0;n<size;++n) 

  cout << a[n]; 
 

 Using pointers:"

for (T* p = a; 
     p !=a+size; 

   ++p) 
cout << *p; 

"

  Traversing a linked list"

template <class T> struct node 
{ 

T value; // the element 
node<T>* next; // the next Node"

}; 
 
template<class T> struct list 
{ 

node<T>* first; 
}; 
list<T> l; 
… 
for (mode<T>* p=l.first; 

     p!=0;  
     p=p->next) 
  cout << p->value; 
 

NxM Algorithm Implementations?	



1.  find"
2.  copy"
3.  merge"
4.  transform"" " "."" " "."" " "."
N. "accumulate"

1.  vector"
2.  list"
3.  deque"
4.  set"
5.  map"
6.  char[5]"" "."" "."" "."
M. "foobar"
"
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Generic traversal 	



  Can we traverse a vector and a 
list in the same way?"

  Instead of"
for (T* p = a; 

     p !=a+size; 
   ++p) 
cout << *p; 

 We want to write"

for (iterator p = a.begin(); 

     p !=a.end(); 
   ++p) 
cout << *p; 

  Instead of"
 for (node<T>* p=l.first; 
     p!=0;  
     p=p->next) 
  cout << p->value; 

 

 We want to write"

for (iterator p = l.begin(); 

     p !=l.end(); 
   ++p) 
cout << *p; 

 

Implementing iterators for the array	



template<class T>  
class Array { 
public: 
  typedef T* iterator; 
  typedef unsigned size_type; 
  Array(); 
  Array(size_type); 
 

    iterator begin()  
  { return p_;} 
  iterator end()  
  { return p_+sz_;} 
 
private: 
  T* p_; 
  size_type sz_; 
}; 

  Now allows the desired syntax:"

for (Array<T>::iterator p = 
a.begin(); 

     p !=a.end(); 
   ++p) 
cout << *p; 

 

  Instead of 
 
for (T* p = a.p_; 

     p !=a.p_+a.sz_; 
   ++p) 
cout << *p; 
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Implementing iterators for the linked list	



template <class T> 
struct node_iterator { 
Node<T>* p; 
node_iterator(Node<T>* q)  

   : p(q) {} 
 
node_iterator<T>& operator++()  
{ p=p->next;} 
 
T* operator ->()  
{ return &(p->value);} 
 
T& operator*()  
{ return p->value;} 
 
bool operator!=(const  
      node_iterator<T>& x)  
{ return p!=x.p;} 
 
// more operators missing … 
}; 

 
 

template<class T>  
class list { 
 Node<T>* first; 
public: 
  typedef node_iterator<T> iterator; 
 

    iterator begin()  
  { return iterator(first);} 
 
  iterator end()  
  { return iterator(0);} 
}; 

 

 Now also allows the desired syntax:"

for (List<T>::iterator p = l.begin(); 

     p !=l.end(); 
   ++p) 
cout << *p; 

Iterators	



 have the same functionality as pointers 
"

  including pointer arithmetic!"
 iterator a,b; cout << b-a; // # of elements in [a,b[ 
"

 exist in several versions"
 forward iterators … move forward through sequence"
 backward iterators … move backwards through sequence"
 bidirectional iterators … can move any direction"
 input iterators … can be read: x=*p; 
 output iterators … can be written: *p=x; 
"

 and all these in const versions (except output iterators)"
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Container requirements	



 There are a number of requirements on a container that we will 
now discuss based on the handouts"

Containers and sequences	



 A container is a collection of elements in a data structure"

 A sequence is a container with a linear ordering (not a tree)"
 vector"
 deque"
 list"

 An associative container is based on a tree, finds element by a key"
 map"
 multimap"
 set"
 multiset"

 The properties are defined on the handouts from the standard"
 A few special points mentioned on the slides"
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Sequence constructors	



 A sequence is a linear container (vector, deque, list,…)"

 Constructors"
 container() … empty container"
 container(n) … n elements with default value"
 container(n,x) … n elements with value x"
 container(c) … copy of container c"
 container(first,last) … first and last are iterators"

 container with elements from the range [first,last["

 Example:"
 std::list<double> l; 

// fill the list 
… 
// copy list to a vector 
std::vector<double> v(l.begin(),l.end()); 

Direct element access in deque and vector	



 Optional element access (not implemented for all containers)"
 T& container[k] … k-th element, no range check"
 T& container.at(k) … k-th element, with range check"
 T& container.front() … first element"
 T& container.back() … last element"
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Inserting and removing at the beginning and end	



 For all sequences: inserting/removing at end"
 container.push_back(T x) // add another element at end"
 container.pop_back() // remove last element"

 For list and deque (stack, queue)"
 container.push_first(T x) // insert element at start"
 container.pop_first() // remove first element"

"

Inserting and erasing anywhere in a sequence	



 List operations (slow for vectors,  deque etc.!)"
 insert (p,x) // insert x before p"
 insert(p,n,x) // insert n copies of x before p 
 insert(p,first,last) // insert [first,last[ before p"
 erase(p) // erase element at p 
 erase(first,last) // erase range[first,last[ 
 clear() // erase all"
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Vector specific operations	



 Changing the size"
 void resize(size_type) 
 void reserve(size_type) 
 size_type capacity() 

 Note:"
 reserve and capacity regard memory allocated for vector!"
 resize and size regard memory currently used for vector data"

  Assignments"
 container = c … copy of container c"
 container.assign(n) …assign n elements the default value"
 container.assign(n,x) … assign n elements the value x"
 container.assign(first,last) … assign values from the range 

[first,last["
 Watch out: assignment does not allocate, do a resize before!"

The valarray template	



 acts like a vector but with additional (mis)features:"
 No iterators"
 No reserve"
 Resize is fast but erases contents"

  for numeric operations are defined: 
 
std::valarray<double> x(100), y(100), z(100); 
x=y+exp(z); 
"
 Be careful: it is not the fastest library!"
 We will learn about faster libraries later"
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Sequence adapters: queue and stack	



 are based on deques, but can also use vectors and lists"
 stack is first in-last out"
 queue is first in-first out"
 priority_queue prioritizes with < operator"

 stack functions"
 void push(const T& x) … insert at top"
 void pop() … removes top"
 T& top() 
 const T& top() const"

 queue functions"
 void push(const T& x) … inserts at end"
 void pop() … removes front"
 T& front(), T& back(),  
const T& front(), const T& back()"

list -specific functions	



 The following functions exist only for std::list:"
 splice"

  joins lists without copying, moves elements from one to end of the  other"
 sort"

 optimized sort, just relinks the list without copying elements"
 merge"

 preserves order when “splicing” sorted lists"
 remove(T x) 
 remove_if(criterion)"

 criterion is a function object or function, returning a bool and taking a const T& as 
argument, see Penna model"

 example:"
bool is_negative(const T& x) { return x<0;}"

 can be used like"
list.remove_if(is_negative);"
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The map class	



  implements associative arrays"
 map<std::string,long> phone_book; 
phone_book[“Troyer”] = 32589; 
phone_book[“Heeb”] = 32591; 
if(phone_book[name]) 
  cout << “The phone number of “ << name <<  “ is “  
       << phone_book[name]; 
else 
  cout << name << “\’s phone number is unknown!’;"

  is implemented as a tree of pairs"
 Take care:"

 map<T1,T2>::value_type is pair<T1,T2> 
 map<T1,T2>::key_type is T1 
 map<T1,T2>::mapped_type is T2"
 insert, remove, … are sometimes at first sight confusing for a map!"

Other tree-like containers	



 multimap"
 can contain more than one entry (e.g. phone number) per key"

 set"
 unordered container, each entry occurs only once"

 multiset"
 unordered container, multiple entries possible  
"

 extensions are no problem"
 if a data structure is missing, just write your own"
 good exercise for understanding of containers"
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Search operations in trees	



  In a map<K,V>, K is the key type and V the mapped type"
 Attention: iterators point to pairs"

  In a map<T>, T is the key type and also the value_type"

 Fast O(log N) searches are possible in trees:"
 a.find(k) returns an iterator pointing to an element with key k or 

end() if it is not found."
 a.count(k) returns the number of elements with key k."
 a.lower_bound(k) returns an iterator pointing to the first element 

with key >= k."
 a.upper_bound(k) returns an iterator pointing to the first element 

with key > k."
 a.equal_range(k) is equivalent to but faster than  
std::make_pair(a.lower_bound(k) , a.upper_bound(k))"

"

Search example in a tree	



  Look for all my phone numbers:"
  // some typedefs 

typedef multimap<std::string, int> phonebook_t; 
typedef phonebook_t::const_iterator IT; 
typedef phonebook_t::value_type value_type; 
 
// the phonebook  
phonebook_t phonebook; 
 
// fill the phonebook 
phonebook.insert(value_type(“Troyer”,32589)); 
… 
 
// search all my phone numbers  
pair< IT,IT> range =  phonebook.equal_range(“Troyer”); 
 
// print all my phone numbers  
for (IT it=range.first; it != range.second;++it) 
  cout << it->second << “\n”; 
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Almost Containers	



 C-style array"
 string"
 valarray"
 bitset"

 They all provide almost all the functionality of a container"
 They can be used like a container in many instances, but not all"

 int x[5] = {3,7,2,9,4}; 
vector<int> v(x,x+5); "

 uses vector(first,last), pointers are also iterators!"

The generic algorithms	



  Implement a big number of useful algorithms 
"

 Can be used on any container"
 rely only on existence of iterators"
 “container-free algorithms”"
 now all the fuss about containers pays off! 
"

 Very useful  
"

 Are an excellent example in generic programming  
"

 We will use them now for the Penna model  
That’s why we did not ask you to code the Population class for the 
Penna model yet!"
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Example: find 	

	



 A generic function to find an element in a container:"
 list<string> fruits; 
list<string>::const_iterator found = 
  find(fruits.begin(),fruits.end(),”apple”); 
if (found==fruits.end()) // end means invalid iterator 
  cout << “No apple in the list”; 
else 
  cout << “Found it: “ << *found << “\n”; 

 find declared and implemented as"
 template <class In, class T> 
  In find(In first, In last, T v) { 
    while (first != last  && *first != v) 
      ++first; 
    return first; 
  } 

Example: find_if  	



  takes predicate (function object or function)"
 bool favorite_fruits(const std::string& name)  

{ return (name==“apple” || name == “orange”);} 
 

 can be used with find_if function:"
 list<string>::const_iterator found = 

  find_if(fruits.begin(),fruits.end(),favorite_fruits); 
if (found==fruits.end()) 
  cout << “No favorite fruits in the list”; 
else 
  cout << “Found it: “ << *found << “\n”; 

 find_if declared and implemented as as"
 template <class In, class Pred> 

  In find_if(In first, In last, Pred p) { 
    while (first != last && !p(*first) ) 
      ++first; 
    return first; 
} 



Data structures and algorithms in the  C++ 
standard library	



Weeks 7&8	



Programming techniques for scientific 
simulations	

 32	



Member functions as predicates	



 We want to find the first pregnant animal:"
 list<Animal> pop; 
find_if(pop.begin(),pop.end(),is_pregnant) 
"

 This does not work as expected, it expects"
 bool is_pregnant(const Animal&);"

 We want to use "
 bool Animal::pregnant() const  
"

 Solution: mem_fun_ref function adapter"
 find_if(pop.begin(),pop.end(), 
              mem_fun_ref(&Animal::pregnant));  
"

 Many other useful adapters available"
 Once again: please read the books before coding your own!"

push_back and back_inserter	



 Attention:"
 vector<int> v,w; 
for (int k=0;k<100;++k){ 
  v[k]=k; //error: v is size 0! 
  w.push_back(k); // OK:grows the array and assigns 
}"

 Same problem with copy:"
 vector<int> v(100), w(0); 
copy(v.begin(),v.end(),w.begin()); // problem: w of size 0!"

 Solution1: vectors only"
 w.resize(v.size()); copy(v.begin(),v.end(),w.begin()); "

 Solution 2: elegant"
 copy(v.begin(),v.end(),back_inserter(w)); // uses push_back"

 also push_front and front_inserter for some containers "
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Penna Population	



 easiest modeled as "
 class Population : public list<Animal> {…}"

 Removing dead:"
 remove_if(mem_fun_ref(&Animal::is_dead));"

 Removing dead, and others with probability N/N0:"
 remove_if(animal_dies(N/N0));"
 where animal_dies is a function object taking N/N0 as parameter"

  Inserting children: "
 cannot go into same container, as that might invalidate iterators: 

vector<Animal> children; 
for(const_iterator a=begin();a!=end();++a) 
  if(a->pregnant())  
    children.push_back(a->child()); 
copy(children.begin(),children.end(), 
    back_inserter(*this);"

The binary search	



 Searching using binary search in a sorted vector is O(ln N)	



 Binary search is recursive search in range [begin,end[	


 If range is empty, return"
 Otherwise test middle=begin+(end-begin)/2"

 If the element in the middle is the search value, we are done"
 If it is larger, search in [begin,middle["
 If it is smaller, search in [middle,end[	



 The search range is halved in every step and we thus need at most 
O(ln N) steps	
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Example: lower_bound	



 template<class IT, class T> 
 IT lower_bound(IT first, IT last, const T& val) { 
   typedef typename iterator_traits<IT>::difference_type dist_t; 
   dist_t len = distance(first, last); // generic function for last-first 
   dist_t half;       
   IT middle;       
   while (len > 0) { 
     half = len >> 1; // faster version of half=len/2 
     middle = first; 

  advance(middle, half);// generic function for middle+=half"
     if (*middle < val) { 
       first = middle;   

    ++first; 
       len = len - half - 1; 

  } 
     else 

    len = half; 
} 

   return first;     
 } 

Algorithms overview	



  Nonmodifying"
 for_each 
 find, find_if, 

find_first_of 

 adjacent_find 
 count, count_if 
 mismatch 
 equal 
 search 
 find_end 
 search_n 

 Modifying"
 transform 
 copy, copy_backward 
 swap, iter_swap, 

swap_ranges 

 replace, replace_if, 
replace_copy, 
replace_copy_if 

 fill, fill_n 
 generate, generate_n 
 remove, remove_if, 

remove_copy, 
remove_copy_if 

 unique, unique_copy 
 reverse, reverse_copy 
 rotate, rotate_copy 
 random_shuffle"
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Algorithms overview (continued)	



  Sorted Sequences"
 sort,stable_sort 
 partial_sort, 

partial_sort_copy 

 nth_element 
 lower_bound, upper_bound 
 equal_range 
 binary_search 
 merge, inplace_merge 
 partition, 

stable_partition 
"

  Permutations"
 next_permutation 
 prev_permutation 

  Set Algorithms"
 includes 
 set_union 
 set_intersection 
 set_difference 
 set_symmetric_difference 
"

 Minimum and Maximum"
 min 
 max 
 min_element 
 max_element 
 lexicographical_compare 

Exercise	



 Code the population class for the Penna model based on a 
standard container"

 Use function objects to determine death  
"

  In the example we used a loop. "
 Can you code the population class without using any loop?"
 This would increase the reliability as the structure is simpler! 
"

 Also add fishing in two variants:"
 fish some percentage of the whole population"
 fish some percentage of adults only"

 Read Penna's papers and simulate the Atlantic cod!  
Physica A, 215, 298 (1995)"
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stream iterators and Shakespeare	



  Iterators can also be used for streams and files"
 istream_iterator 
 ostream_iterator 
"

 Now you should be able to understand Shakespeare: 
 
int main() 
 { 
    vector<string> data; 
    copy(istream_iterator<string>(cin),istream_iterator<string>(), 
         back_inserter(data)); 
    sort(data.begin(), data.end()); 
    unique_copy(data.begin(),data.end(),ostream_iterator<string>(cout,"\n")); 
} 
 

Summary	



 Please read the sections on"
 containers"
 iterators"
 algorithms"

  in Stroustrup or Lippman (3rd editions only!) 
"

 Examples of excellent class and function designs"
 Before writing your own functions and classes: 

Check the standard C++ library!"
 When writing your own functions/classes: 

Try to emulate the design of the standard library"
 Don't forget to include the required headers:"

 <algorithm>, <functional>, <map>, <iterators>, … as needed"


