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Templates and generic programming	



Improving on last week’s assignment	



 Quiz: How did you calculate the machine precision? 

1.  Did you just have a main() function 

2.  Did you have three functions with different names? 
1.  epsilon_float() 
2.  epsilon_double() 
3.  epsilon_long_double() 

3.  Did you have three functions with the same name? 
1.  epsilon(float x) 
2.  epsilon(double x) 
3.  epsilon(long double x) 

4.  Or did you have just one function that could be used for any type? 
1.  epsilon() 
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 Algorithms are usually very generic: 
for min() all that is required is an order relation “<“  

 Most programming languages require concrete types for the 
function definition 
 C: 

int min_int(int a, int b) { return a<b ? a : b;} 

float min_float (float a, float b) { return a<b ? a : b;} 

double min_double (double a, double b) { return a<b ? a : b;} 

… 

 Fortran: 
 MIN(), AMIN(), DMIN(), … 

� 

min(x,y) =  
x if x < y
y otherwise

⎧ 
⎨ 
⎩ 

Generic algorithms versus concrete implementations	



 solves one problem immediately: we can use the same name 
int min(int a, int b) { return a<b ? a : b;} 

float min (float a, float b) { return a<b ? a : b;} 

double min (double a, double b) { return a<b ? a : b;} 

 Compiler chooses which one to use 
min(1,3); // calls min(int, int) 
min(1.,3.); // calls min(double, double) 

 However be careful: 
min(1,3.1415927); // Problem! which one? 
min(1.,3.1415927); // OK 
min(1,int(3.1415927)); // OK but does not make sense 
or define new function double min(int,float); 

Function overloading in C++	
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How can several functions have the same name?	



1.  Why should it be a problem? 
2.  I don’t know 
3.  The compiler uses magic 
4.  It is a problem, but I know how it can be solved 

C++ versus C linkage	



 How can three different functions have the same name? 
 Look at what the compiler does 

cd pt11 

svn update 

cd week3 

c++ -c -save-temps -O3 min.cpp 

 Look at the assembly language file min.s and also at min.o 
nm min.o 

 

 The functions actually have different names! 
 Types of arguments appended to function  name 

 C and Fortran functions just use the function name 
 Can declare a function to have C-style name by using extern “C” 
extern “C” { short min(short x, short y);} 
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Using macros (is dangerous)	



 We still need many functions (albeit with the same name) 

  In C we could use preprocessor macros: 
 #define min(A,B) (A < B ? A : B) 

 However there are serious problems: 
 No type safety 
 Clumsy for longer functions 
 Unexpected side effects: 

 
min(x++,y++); // will increment twice!!! 
              // since this is: (x++ < y++ ? x++ : y++) 

 Look at it: 
 c++ -E minmacro.cpp 

Generic algorithms using templates in C++	



  C++ templates allow a generic implementation: 

 template <class T>  
inline T min (T x, T y)  

  { 
    return (x < y ? x : y); 
  } 

 
 
 

  Using templates we get functions that 
 work for many types T 
 are optimal and efficient since they can be inlined 
 are as generic and abstract as the formal definition 
 are one-to-one translations of the abstract algorithm 

min(x,y) is 
x if x < y
y otherwise

⎧ 
⎨ 
⎩ 
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Usage Causes Instantiation	



 
template <class T> 
T min(T x, T y) 
{ 

 return x < y ? x : y; 
} 
 
 
int x = min(3, 5); 
int y = min(x, 100); 
 
 
 
 
 
float z = min(3.14159f, 2.7182f); 

 
// T is int 
 
int min<int>(int x, int y) 
{ 

 return x < y ? x : y; 
} 

 
// T is float 
 
float min<float>(float x, float y) 
{ 

 return x < y ? x : y; 
} 

Discussion	



“What is Polymorphism?” 
 
Our definition: 
  Using many different types through the same interface 
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Generic programming process	



  Identify useful and efficient algorithms 

 Find their generic representation 
 Categorize functionality of some of these algorithms 
 What do they need to have in order to work in principle 

 Derive a set of (minimal) requirements that allow these algorithms 
to run (efficiently)  
 Now categorize these algorithms and their requirements 
 Are there overlaps, similarities? 

 Construct a framework based on classifications and requirements 

 Now realize this as a software library 

Generic Programming Process: Example	



  (Simple) Family of Algorithms: min, max 
 Generic Representation 

 Minimal Requirements? 
 Find Framework: Overlaps, Similarities? 

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎩

max(x, y) =
x if x > y
y otherwise

⎧
⎨
⎩
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Generic Programming Process: Example	



  (Simple) Family of Algorithms: min, max 
 Generic Representation 

 Minimal Requirements yet? 
 Find Framework: Overlaps, Similarities? 

min(x, y) =
x if x < y
y otherwise

⎧
⎨
⎪

⎩⎪

max(x, y) =
x if y < x
y otherwise

⎧
⎨
⎪

⎩⎪

Generic Programming Process: Example	



 Possible Implementation 

template <class T> 
T min(T x, T y) 
{ 
  return x < y ? x : y; 
} 
 

 What are the Requirements on T? 
 operator < , result convertible to bool 
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Generic Programming Process: Example	



 Possible Implementation 

template <class T> 
T min(T x, T y) 
{ 
  return x < y ? x : y; 
} 
 

 What are the Requirements on T? 
 operator < , result convertible to bool 
 Copy construction: need to copy the result! 

Generic Programming Process: Example	



 Possible Implementation 

template <class T> 
T const& min(T const& x, T const& y) 
{ 
  return x < y ? x : y; 
} 
 

 What are the Requirements on T? 
 operator < , result convertible to bool 
 that’s all! 



Templates and generic programming	

 Week 3	



Programming techniques for scientific 
simulations	

 9	



The problem of different types: manual solution	



 What if we want to call min(1,3.141)? 

template <class R,U,T> 
R const& min(U const& x, T const& y) 
{ 
  return (x < y ? static_cast<R>(x) : static_cast<R>(y)); 
} 
 

  Now we need to specify the first argument since it 
cannot be deduced. 

 min<double>(1,3.141); 
 min<int>(3,4); 

 
  

 
  

Concepts	



  A concept is a set of requirements, consisting of valid expressions, 
associated types, invariants, and complexity guarantees. 

  A type that satisfies the requirements is said to model the concept. 

  A concept can extend the requirements of another concept, which is 
called refinement. 

  A concept is completely specified by the following: 

 Associated Types: The names of auxiliary types associated with the 
concept. 

 Valid Expressions: C++ expressions that must compile successfully. 

 Expression Semantics: Semantics of the valid expressions. 

 Complexity Guarantees: Specifies resource consumption (e.g., 
execution time, memory). 

 Invariants: Pre and post-conditions that must always be true. 
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Assignable concept	



 Notation 
 X   A type that is a model of Assignable 
 x, y  Object of type X 

Expression! Return type! Semantics! Postcondition!

x=y;" X&" Assignment" X is equivalent to y"

swap(x,y)" void" Equivalent to"
{  "
  X tmp = x;   "
  x = y;   "
  y = tmp; "
} ""

CopyConstructible concept	



 Notation 
 X   A type that is a model of CopyConstructible  
 x, y  Object of type X 

Expression! Return type! Semantics! Postcondition!
X(y)" X&" Return value is 

equivalent to y"
X x(y);" Same as "

X x;"
x=y;"

x is equivalent to y"

X x=y;" Same as "
X x;"
x=y;"
"
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Documenting a template function	



  In addition to  
 Preconditions 
 Postconditions 
 Semantics 
 Exception guarantees 

 The documentation of a template function must include 

 Concept requirements on the types 

 Note that the complete source code of the template function must 
be in a header file 

Argument Dependent Lookup	



  Also known as Koenig Lookup 
  Applies only to unqualified calls 

  Examines “associated classes 
and namespaces” 

  Adds functions to overload set 
 Originally for operators, e.g. 

operator<<(std::ostream&, T); 

namespace lib  {	


	

template <class T> T abs(T x)  	


	

 	

{ return x > 0 ? x : -x; }	



	


	

template <class T> 	


	

T compute(T x) {	


	

 	

…	


	

 	

return abs(x);	


	

}	



}	


namespace user {	


	

class Num {};	


	

Num abs(Num);	


	

Num x = lib::compute(Num());	



}	



? 

abs(x) 	

 	

 	

std::abs(x)	





Templates and generic programming	

 Week 3	



Programming techniques for scientific 
simulations	

 12	



Examples: iterative algorithms for linear systems	



  Iterative template library (ITL) 
 Rick Lee et al, Indiana 

  generic implementation of 
iterative solvers for linear 
systems from the “Templates” 
book 

  Iterative Eigenvalue Template 
Library (IETL) 
 Prakash Dayal et al, ETH 

  generic implementation of 
iterative eigensolvers. partially 
implements the eigenvalue    
 templates book 

The power method	



  Is the simplest eigenvalue solver 
  returns the largest eigenvalue and corresponding eigenvector 

 Only requirements: 
 A is linear operator on a Hilbert space 
  Initial vector y is vector in the same Hilbert space 

  Can we write the code with as few constraints? 

� 

yn+1 = Axn
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Generic implementation of the power method	



 A generic implementation is possible 
     

OP A; 
V v,y; 
T theta, tolerance, residual; 
… 
do { 
  v = y / two_norm(y);   // line (3) 
  y = A * v;    // line (4) 
  theta = dot(v,y);   // line (5) 
  v *= theta;    // line (6) 
  v -= y; 
  residual = two_norm(v); // ||q v - Av|| 
} while(residual>tolerance*abs(theta)); 

Concepts for the power method	



  The triple of types (T,V,OP) models the Hilbertspace concept if 

 T must be the type of an element of a field 
 V must be the type of a vector in a Hilbert space over that field 
 OP must be the type of a linear operator in that Hilbert space 
  

  All the allowed mathematical operations in a Hilbert space have to exist: 
 Let v, w be of type V 
 Let r, s of type T  
 Let a be of type OP. 
 The following must compile and have the same semantics as in the 

mathematical concept of a Hilbert space: 
r+s, r-s, r/s, r*s, -r have return type T 
v+w, v-w, v*r, r*v, v/r have return type V 
a*v has return type V 
two_norm(v) and  dot(v,w) have return type T 
… 

 Exercise: complete these requirement 


