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Exercise 8.1 The Law of Mass Action

The goal of this exercise is to understand the statistical mechanics of a mixture of ideal
gases undergoing chemical reactions.
Consider a gaseous mixture of r different substances A1, . . . , Ar that undergo s chemical
reactions,

να1A1 + · · ·+ ναr Ar = 0,

indexed by α ∈ {1, . . . , s}, with {ναi } the stoichiometric coefficients of the reaction α.
Example: The reaction of water formation would be expressed through, A1 = H2, A2 =
O2, and A3 = H2O, with ν1 = 2, ν2 = 1, and ν3 = −2.
Let Ni be the number of particles of the substance Ai. For a materially closed system,
the set of possible variations in the number of particles is given by

dNi =
s∑

α=1

ναi dλ
α,

with independent variations dλ1, . . . , dλs of the particle numbers according to the s reac-
tion processes.

a) Show that, assuming constant temperature and pressure, the condition for ther-
modynamic equilibrium constrains the chemicals potentials µi of the r species to
obey

r∑
i=1

ναi µi = 0,

for each α = 1, . . . , s independently, and interpret this result.

b) Let each substance Ai be an ideal gas composed of particles of mass mi and with
potential energy Ei. The Hamiltonian for the particles of type Ai then reads

Hi =

Ni∑
j=1

( ~pj2
2mi

+ Ei

)
.

Compute the grand canonical partition function Z of the system and show that in
equilibrium a law of mass action

r∏
i=1

〈Ni〉ν
α
i =

r∏
i=1

[
V (2πmikBT )3/2e−βEi

]ναi ≡ Kα(T, V ),

is obtained for each reaction α.

This law states that in thermodynamic equilibrium, every chemical reaction is char-
acterized by one value Kα(T, V ), which depends only on the coefficients ναi , the
binding energies Ei and the particle masses mi. In particular, Kα(T, V ) is indepen-
dent of the proportion of species in the mixture.

Remark: Ei can be a binding energy of a molecule or a Zeeman energy for substances
with atomic or molecular magnetic moments



Exercise 8.2 Independent Dimers in a Magnetic Field. Quantum vs Ising

We consider a system of N independent dimers of two spins, s = 1/2, described by the
Hamiltonian

Hquantum
0 = J

∑
i

(
~Si,1 · ~Si,2

)
, (1)

where i is the dimer index and m = 1, 2 denotes the spin state along z direction (| ↑〉 or
| ↓〉). For simplicity, we use ~ = 1. To this quantum system corresponds a classical Ising
dimer, described by:

HIsing
0 =

1

2
J
∑
i

(
σi,1 · σi,2 −

1

2

)
, (2)

where σi,m = ±1. The spins are aligned along the z axis. We will use eigenstates and
eigenenergies to denote also the classical states and energies.

a) What are the eigenstates and the eigenenergies of a single dimer for the two cases?

b) For both cases consider the macroscopic system and determine the Helmholtz free
energy, the entropy, the internal energy and the specific heat as a function of tem-
perature and N . Discuss the limit T → 0 and T →∞ for both signs of J (antifer-
romagnetic and ferromagnetic case).

Note: The following exercises are left for the fun of the interested reader.

c*) We now apply a magnetic field along z direction leading to an additional term in
the Hamiltonian,

Hquantum
mag = −gµBH

∑
i,m

Szi,m (3a)

HIsing
mag = −gµBH

∑
i,m

σi,m
2
. (3b)

How do the eigenenergies change? Sketch the energies with respect to the applied
field H, the partition functions and determine the ground state for both cases. For
the antiferromagnetic case you should notice a critical field. What differences do
you notice between the classical and quantum system when the the critical field is
reached? For the quantum case discuss in this context the entropy per dimer in the
limit T → 0.

d*) Calculate the magnetization m for the two cases. In which limit are they the same?
Moreover compute the magnetic susceptibility χ for the quantum case and discuss
its dependence on H for different temperatures.
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