Übung 1. Drehimpuls und Drehungen

Sei SO(3) durch die 3×3 reellen Matrizen R mit $R^TR = 1$ und det(R) = 1 dargestellt. Ihre Lie-Algebra so(3) ist dann durch die antisymmetrischen reellen 3×3 Matrizen dargestellt:

$$so(3) = \{ \Omega(\vec{\omega}) := \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \mid \vec{\omega} := (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3 \}.$$

 $\Omega_i := \Omega(\vec{e_i}), \ \vec{e_i}, \ i = 1, 2, 3$, die gewöhnliche Orthonormalbasis von \mathbb{R}^3 , bildet also eine Basis von so(3). Es gilt ferner

(i)
$$\Omega(\vec{\omega}) = \sum_{i=1}^{3} \omega_i \Omega_i$$
 und $\Omega(\vec{\omega}) \vec{x} = \vec{\omega} \wedge \vec{x}, \ \vec{x} \in \mathbb{R}^3$,

(ii) $[\Omega_1, \Omega_2] = \Omega_3$ und zyklisch vertauscht.

Beachte, dass die letzte Bedingung die Lie-Algebra so(3) vollständig charakterisiert.

(a) Zeige, dass $e^{t\Omega(\vec{\omega})} = R(\vec{e}, \omega t)$ gilt, wobei $R(\vec{e}, \omega t)$ die Drehung um $\vec{\omega}$ mit Winkel $t\omega$ ist, $\vec{\omega} = \omega \vec{e}$, $|\vec{e}| = 1$.

Bemerke ausserdem, dass $\frac{d}{dt}R(\vec{e},\omega t)|_{t=0} = \Omega(\vec{\omega})$.

Betrachte nun den Drehimpuls $\vec{L} = \vec{x} \wedge \vec{p}$ und als Hilbertraum $L^2(\mathbb{R}^3)$. Jede Komponente $L_k = \varepsilon_{klm} \, x_l \, p_m = -i\hbar \, \varepsilon_{klm} \, x_l \, \partial_m, \ k = 1, 2, 3$, ist ein Operator auf $L^2(\mathbb{R}^3)$, wobei $\varepsilon_{123} = 1$ und ε_{klm} total antisymmetrisch ist. Dabei haben wir die Einstein'sche Summationskonvention benutzt, d.h. wir summieren über wiederholte Indizes. Definiere $O_k := -\frac{i}{\hbar} L_k, \ k = 1, 2, 3$.

- (b) Zeige die folgenden Aussagen:
 - (i) $L_k = L_k^{\dagger}$, d.h. L_k ist selbstadjungiert,
 - (ii) $[O_1, O_2] = O_3$ und zyklisch vertauscht, d.h. die O_k bilden eine Basis von so(3),
 - (iii) $e^{\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}}\vec{x}e^{-\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}} = \vec{x} + t\omega(\vec{e}\wedge\vec{x}) + O(t^2).$

 $e^{-\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}}$ wirkt also auf $L^2(\mathbb{R}^3)$ als Drehung im Sinn dass $\langle \vec{x} \rangle_{\psi'} = \langle \vec{x}' \rangle_{\psi}$ wobei $|\psi' \rangle = e^{-\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}}|\psi \rangle$ der gedrehte Zustand bzw. $\vec{x}' = e^{\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}}\vec{x}\,e^{-\frac{i}{\hbar}t\vec{\omega}\cdot\vec{L}}$ der gedrehte Koordinatenvektor sind. Beachte, dass $iO_k =: M_k$ im Skript.

Übung 2. Drehungen im Spinraum

Als nächstes betrachten wir den Spinraum \mathbb{C}^2 und die selbstadjungierten unitären Operatoren gegeben durch die Pauli-Matrizen

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

und definieren $\vec{\sigma} := (\sigma_1, \sigma_2, \sigma_3)$. Für einen Spin-1/2 Freiheitsgrad bilden sie eine Darstellung des Spinoperators \vec{S} , gegeben durch $\vec{S} := \frac{\hbar}{2}\vec{\sigma}$. Die Eigenzustände $|\frac{1}{2}, \pm \frac{1}{2}\rangle$ von S_3 sind dann (1,0) bzw. (0,1).

- (a) Zeige die folgenden Relationen für die Pauli-Matrizen:
 - (i) $\sigma_k \sigma_l = \delta_{kl} \mathbb{1} + i \varepsilon_{klm} \sigma_m$,
 - (ii) $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = (\vec{a} \cdot \vec{b})\mathbb{1} + i\vec{\sigma} \cdot (\vec{a} \wedge \vec{b})$, für $\vec{a}, \vec{b} \in \mathbb{R}^3$,
 - (iii) $[A_1, A_2] = A_3$ und zyklisch vertauscht, mit $A_k = -\frac{i}{2}\sigma_k$, k = 1, 2, 3.

Die A_k , k=1,2,3 bilden also auch eine Basis von so(3). Im Folgenden möchten wir andeuten, wie der Operator $V(\vec{\omega}t) := e^{-\frac{i}{2}t\vec{\omega}\cdot\vec{\sigma}} = e^{-\frac{i}{\hbar}t\vec{\omega}\cdot\vec{S}}$ als Drehung im Spinraum zu verstehen ist.

- (b) Zeige: $V(\vec{\omega}t) = \cos(\frac{\omega t}{2})\mathbb{1} i(\vec{e} \cdot \vec{\sigma})\sin(\frac{\omega t}{2})$, wobei $\vec{\omega} = \omega \vec{e}$, $|\vec{e}| = 1$.
- (c) Wir betrachten einen Spin-1/2 Freiheitsgrad, der sich im Eigenzustand $|\frac{1}{2}, \frac{1}{2}\rangle$ von S_3 befindet. Desweiteren werde eine Drehung um die $\vec{e_1}$ -Achse mit Winkel $\pi/2$ ausgeführt. Was ist der Effekt dieser Drehung auf den Spin?
- (d) Wir möchten nun den Effekt einer Drehung im Spinraum auf eine allgemeine Achse \vec{n} betrachten. Zeige:

$$\vec{\sigma} \cdot \vec{n}' := V(\vec{\omega}t)^{\dagger} (\vec{\sigma} \cdot \vec{n}) V(\vec{\omega}t) = \vec{\sigma} \cdot [\vec{e}(\vec{e} \cdot \vec{n}) + (\vec{n} - \vec{e}(\vec{e} \cdot \vec{n})) \cos(\omega t) + (\vec{n} \wedge \vec{e}) \sin(\omega t)].$$

(e) Welchen Effekt hat eine Drehung um $2\pi \vec{e}$ auf einen allgemeinen Zustand $|\psi\rangle$?

Übung 3. Tensorprodukte und Singulett-Zustand

(a) Seien V, W und Z drei Hilberträume. Verifiziere, dass

$$(V \otimes W) \otimes Z \cong V \otimes (W \otimes Z)$$
,

d.h. dass die zwei Seiten der Gleichung isomorph sind. Das Tensorprodukt ist also bis auf Isomorphismus assoziativ.

(b) Es seien V, W zwei 2-dimensionale Hilberträume mit Basen $\{v_1, v_2\} \subset V$ und $\{w_1, w_2\} \subset W$. Zeige, dass kein Paar von Vektoren $v \in V$ und $w \in W$ existiert, so dass

$$v \otimes w = v_1 \otimes w_1 + v_2 \otimes w_2 \,. \tag{1}$$

(c) Ein Beispiel davon ist in einem Spin-1/2 System der antisymmetrische Singulett-Zustand

$$|\psi^{-}\rangle := \frac{1}{\sqrt{2}}(|\vec{e}_{1}\rangle_{A}\otimes|\vec{e}_{2}\rangle_{B} - |\vec{e}_{2}\rangle_{A}\otimes|\vec{e}_{1}\rangle_{B}).$$

Wir möchten die Teilsysteme A und B bezüglich einer rotierten Basis $|\alpha\rangle:=\cos(\alpha)|\vec{e}_1\rangle+\sin(\alpha)|\vec{e}_2\rangle,\ |\alpha^\perp\rangle:=-\sin(\alpha)|\vec{e}_1\rangle+\cos(\alpha)|\vec{e}_2\rangle$ messen. Dazu definieren wir noch die Projektionsoperatoren $O_{A,B}^\alpha:=|\alpha\rangle\langle\alpha|-|\alpha^\perp\rangle\langle\alpha^\perp|$. Zeige nun, dass im Zustand $|\psi^-\rangle$ der Operator $O_A^\alpha\otimes O_B^\beta$ den Wert -1 mit folgender Warscheinlichkeit annimmt:

$$Pr[O_A^{\alpha} \otimes O_B^{\beta} = -1]_{|\psi^{-}\rangle} = \cos^2(\alpha - \beta).$$