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I. l-'lfectiyg NiHiicTlwiriiirfliaable Theories ill Physics 

I.I. Infrared Kuiil* of the standard model. 

OtMCf vol particle interaction* can sometime* be described by effective nunrcnor 
malizable theories that, in the context of the standard model for strong and elcctroweak 
interaction*, correspond to a particular long distance, or low energy, limit of tlie un­
derlying rcnorinalizahie theory. For example, tlie Fermi theory of 0-dccay correctly 
describes weak charged current interactions in tile limit of •mall momentum transfer 
ft,, compared with the mas* mw of the charged intermediate bosons If* that metiiate 
time interactions: 

kj'J « ...*, = 1 /V/86V. (1.1) 
where Gr i* the Fermi coupling constant. Another example is tlie SV(i)L x 5(/(2)n 
chiral invariant <r model that describe* pion dynamics at energies that are small com­
pared with the inverse confinement radius of QCD. However, in this case, we cannot 
•imply reproduce the elective tow energy theory as a particular limit of * parameter 
(eg., mw — oo for the electroweak theory) of the QCD lagrangian; numerical meth­
ods used in attempt* to establish such a connection will be described in the lectures of 
Pctrosuio *, 

Finally, quantum gravity and its nupersymmetrk extension, supergravity, are 
nonrenormakxable theories that are often conjectured to be the low energy/long dis­
tance Knit of • trait* (rather than rcnormalizable) theory which should become mani­
fest at energy scale* large compared to the Planck scale or some other mass parameter 
characterising the underlying physics. The current leading candidate for such a theory 
is a auperstring theory1 in ten dimensions, in which case the relevant parameter could 
be the compactuicatioo scale or the string tension, both of which are expected to be 
within * fcw orders of migrv- ui the Planck mass. 

Cfective i.,u: dimensional field theories suggested by superstring theories gen-
- ".y have a high degree of vacuum degeneracy at tree level which is related to symme­
tries of the effective Lagrangian under nonlinear transformations among scalar fields, 
similar to the chiral invariance of the nonlinear a model for low energy pions. An im­
portant question then is to what degree the degeneracy is lifted by loop corrections to 
the elective tree Lagraogiu- In this lecture I will discus* one-loop corrections to ef­
fective aonretwfoialrzable theories, with special attention to loop expansion technique* 
that preserve*]! the invariance* of the effective tree Lagrangian. Such symmetrica play 
an important role in the superstring-inspired field theories that I wilt discuss in my 
second lecture. Here I illustrate the relevant techniques with examples drawn from 
the standard model where it is possible to compare results using the effective low en-
ergy/kxMj distance oonrenormalizable theory with exact calculations in the underlying 
renormaliiaUe theory- __ 

Recall first two important properties of ultraviolet divergent contributions at 
each order in the loop expansion for renormalKcable theories: a) They are at most 
logarithmic - with the important exception of quadratkally divergent contribution* to 
scalar masses that I will discus* later in relation to the gauge hierarchy problem, b) 
They can be reabsorbed into redefinitions of the parameters of the tree Lagrangian -
coupling constant, fermion masses, etc. 

Now consider the Fermi theory of low .ffiiergy charged current weak interactions. 
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II 2) 
Tlie one-loop contribution. Fig. la, to the effective fbur-fermion coupling is nuwtrAt-
ically divergent. Cutting "If the loop momentum integration at |p| = A gives llie 

**'f>\ 

Figure It Divergent one-loop contri­
bution to 4-poiRl (a) and 8-poiat (k) 
functions ia the Fermi theory. 

Figure 3i Finite oae-loop coatribu-
tioaa to 4-Boiat (a) and t-polst (a) 
fcrauoa fiwctioaa ia the reaormalii-
•Ms gauge theory. 

estimate (recall: there is a factor (4a) ' ' for each loop integration): 

(1.3) 

In the context of the standard model, we know that the Fermi theory is relevant only 
for momenta If)* < < mjv; if we identify the cut-oil A with the scale at which the Fermi 
theory ceases to be valid. A' ~ m\y, we obtain, using (1-1): 

« ^ ~ * , ^ t f M f c J , - 5 6 - . (1.4) 

where a m « 3 /4* •* t n e "**'< "*•"* structure* constant. The result (1.4) can be 
compared with the low energy limit lor external momenta of tbe diagram of Fig. 2a, 
which is finite and yields the same estimate: 

_ » , ' * > , * , wr^^'-^-r.^^- (1.5) 

in the context of the Fermi theory, the quadratically divergent one loop correc­
tion (1.3) can be absorbed into a redefinition of the Fermi ccipling constant. However, 
there are also logarithmically divergent contributions to the one-loop effective action 
that generate new couplings. Fir example, the contribution of Fig. lb can be estimated 

C« ~ J—VJiGrflniA'/SHfatL)*. (1.6) 



-t,. 

whi-rr /i is a finuHHi mass m, i>r an eximial momentum hj„,|. Uiiiwnsioii.'il consider* 
jlums and an analyst! of llx- infrared behavior of the corresponding finite diagram of 
Fig. 2b gives tlic miniate 

£ - - »&&&M"4.VM*n*>\ (IT> 
which, using (1.1). a the M M aa (1.6) for A* = mj.. Note that while tlie underlying 
physics dictate* that A = 0{mw), we cannot in general act A = mn> aa an exact 
equality. Rather, we ahould act A « qmw with n = O(l). The preciae value of n 
depends on ike details of the way in which new phyaica - in this inMance Hie finite 
range r ~ mjr of the weak iatcractkm - enter* to damp the apparent divergence* of 
the effective low energy theory. Moreover, the value of n can differ from one diagram 
to another. Thus, rslrnlslinns wing the effective nonrenorinalizablc theory should 
reproduce the correct order of magnitude of the quadratically divergent term* aa well 
aa the preciae coefideat of the logarithmic divergence. In tbe latter case a reseating of 
A by a factor of order unity can be reabsorbed into residual finite term* that cannot 
be reliably evaluated ia tbe context of the effective theory. 

The above analysis is appropriate for the Fermi theory of charged current cou­
plings with one generation of quark*. When u •-* * charged current couplings are 
included in the elective tree lagrangisn (1.2), one would grossly overestimate one-
loop strangeness changing neutral current transitions with tbe identification A ~ mw. 
Thi* m because there is a much lower threshold, A ~ m e (c=charm) where these tran­
sitions are damped by the QIM mechanism5. Comparison of calculations of this type 
with data provided an estimate* of the charmed quark mass before the underlying 
theory* was known. In other word*, an analysis of the divergent loop contributions to 
a known elective theory can point to thresholds where that theory must be replaced 
by a more convergent one. 

In the following I will focus on a nonrenormalizable theory that is more closely 
related to those suggested by auperstrings, namely a gauged nonlinear cr model, but one 
which can aba be obtained analytically in a particular limit of • parameter (wi« — oo) 
of the standard, rcnormaliiable dectroweak theory. This will provide another labora­
tory for testing the validity of calculations using the effective theory. We will find (as 
for certain soperstrina; inspired models to be discussed later) features similar to those 
for the Fermi theory: quadratic divergence* can be reinterpreted as renormalizationi, 
while new term* are generated at the level of logarithmic divergence*. I will also in­
troduce, in the context of more familiar physic*, notions such as scalar metric, scalar 
curvature and nonlinear symmetries, that play an important role in formal aspects of 
string theories disn—ed by other lecturers. 

1.2 The large Iliggs mass limit of tbe standard electroweak model. 

Neglecting gauge couplings, the scalar sector of the standard model4 has the 
(renocmafizabte) tagrangian 

£ « = » . V c J - # - A ( M , - j ) ' 0 8) 

which is invariant under the group S 0 ( 4 ) « SI/(2) x St/(2) of linear transformations 



atiMMig (lie (nut it**. w*tUi" lick!* llmt pmsmmetttui tlie complex *itmhlct <j. 

In terms of lite component fieltlit (»,•») Eq. (18) take* the tltMiilatrd form of lite linear 
a MIO<JG): 

cH = ^ a - * + 5 f t fir? --xio> + »' - „')'. (t.io) 
A useful nonlinear formulation it obtained by making the field redefinition 

y§7"§ <-•-•> 
In terms of the field variables (t,/) the Legrangian 

diiplaya explicitly the decoupling at zero lour momentum of the mmlrn Goldttone 
modes •,, since these fields appear in (1.12) only through derivative couplings (£*-.*). 
The theories (1.10) and (1.12) are equivalent and give identical J> matrices as calculated 
by expanding about the vacuum denned by < |y>| > V5 - < a > = < a > » w, » = 
a + 0(M - u/v^)», t.- ». + 0(M - »/V5>'-

Instead of (1.8), the Lagrangian relevant for weak interaction physics ia that of 
a gauged scalar sector, with the replacement 

ft*-*>„•»• « . + «„>*. A»**\T.AI (1.13) 

where the four 2 x 2 matrices T. represent the generators of 51/(2)/. x 1/(1) on the 
scalar doublet y>, and 4* are gauge fields. The gauged Lagrangian is invariant under 
the transformation 

v>'«V(*KP, 4; - c/-4,£/-* + utjnr1: 
£(4,».)-£(-*',.?') = £(4, v '), (l.M) 

where in writing the last line of (1.14) we have relabelled the gauge field A' s A. In 
other words we treat the transformed gauge fields as the gauge degrees of freedom. 
With the particular choice 

"--**• * - 3 , C ) ( , , 5 ) 

we obtain the Lagrangian of the "unitary gauge* 

Cu-ClA,p), (1.16) 

and we identify the physical lliggs scalar as H = • - u. Loop calculations are most 
easily done in a renormalizablc gauge in which y> ia represented linearly, Eq. (1.9) and 
the unphyaicaJ scalar degrees of freedom K. appear in the Lagrangian: 

C„ = C{A,a,m), U = a~v. (1.17) 
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lli cltiwr case- the physic*! Iligg? mass is extracted fl.HII llic |HX<;illial ill ( 1.10) (if ( I 12) 
as: 

tn|, = 2u2 A. (118) 

Tlte physical particles of the theory are the inauleu photon 7, the missive 
vector bosons W* and Z and the lliggs particle II. The vector boson masses are 
extracted by expanding thecovariant derivative (1.13) around the vacuum |y | - vfi/2; 
in temia of the linear field variable! (1.9): 

O&tr* m * j - (lV/H"- + 2^jJ,Z") + mwWfiTx- + (l.l«) 

The vacuum expectation value (vev) v ia fixed by the experimental determination of 
the Fermi conatant GF and the identification 

„' = i 2 f c = ( V 5 G F ) - ' st (jTeK) J . 0.20) 

Although the r. are not physical degree* of freedom of the theory, the relevance of the 
<r-model (110) or (1.12) to phyaka ia through a theorem *"• which atalea that S matrix 
elementa including longitudinally polarized I f i and Z't(WL, ZL) can be calculated, up 
to correctione of order m»/Ew and mi/Ei, by replacing W£ and ZL, reapectively, by 
a 1 and a* aa external particle* and uaing the Feyrunan rule* of a renormalizable gauge, 
i.e., uaing the Lagrangiaa (1.17). Thia result ia intuitively plausible if one recalls that 
the phyaical, or unitary, gauge of Eqs. (1.15) and (1.16) waa obtained by a trarufor-
mation W„ -»!*'£ s rK# + 0r* that introducea a longitudinal component £»„» into the 
vector field. Alternatively, ia aa imphyaksl gauge, the laat term in (1-19) introduces 
a mixing of W, with the longitudinal vector £*,«. In practice, calculationa are uaually 
performed in a renormtitrable Hf gauge* in which the gauge fixing term ia arranged to 
precisely cancel the W — x mixing term in (1.19). The Lagrangian ia no longer man­
ifestly gauge invariant, but ia invariant under nonlinear BHS transformations"1 that 
are related to gauge transformation*. The Ward identities of BRS invariance can be 
used7'* to derive the vector-acalar equivalence theorem stated above. 

Now rnneidrr the limit mar - • °°- Since u ia fixed by experiment, Eq. (1.20), 
it follows from (1-18) that A —» oo, i.e., that scalar self-interactions become strong."'* 
If tlie potential energy-density in (1-10) or (1.12) ia to remain finite in this limit, \p\* 
must be fixed at its ground elate value. 

#? = o*+ « ' = »*. (1.21) 

The variable pot a, and therefore the physical scalar H, is eliminated from the effective 
theory as an independent scalar degree of freedom: 

©- = ( « * - a 3 ) ' " . C 2 2 ) 

Note that the constraint (1.21) is invariant under S0(4) or SV{2) x SU(2). When tlie 
condition (1.22) is imposed, the linear transformations 

*>. = <*,»",*» + A". 
ia = -A". , (1.23) 



W1M'I*.*O, iMitl .i„t = 1.2.3 .*!«*(lit*|MIaim*l**f**4. n*>|M*«'*ivi*ty(ii "*vi*i'i»»** .ui<I .HI iixi.il"* 
M'(*2), MC r<*|ilactil liy (IK* iMmliiwai* UMtsiWiiiaitoiis 

Ax. = «.„..,», + /».(»' - •.»)"». (I 21) 

I he Lagrangian (1.10) lakes tlie form 

£ « - $9**'d**'9., (I » ) 

wiicre 

it tlie scalar metric. One can clieck that (1.25) ia explicitly invariant under (1.24). 

The Lagrangian (1.2S) define* an effective nonrenormakzable theory, that, ac­
cording to the equivalence theorem stated above, describes "•*•" the strong sekT-
cou|>lingt of longitudinally polarised Wt and Z'J in the cm. energy region mw « 
i < < mj, in the large m H limit of the standard model. Although the theory is strongly 
coupled, invariant* under dtitt. 51/(2), Eq. (1.24) assures" that the low energy limit 
of 5-matrix dements for * — w (and hence WI,ZL) scattering a n given precisely by 
the Uorn, or tree, approximation to the Lagrangian (1.2S): 

S - 5 » « , ( l + 0 ( » / « « V ) ) . (12?) 

This ia because (1.25) is the only form invariant under (1.24) that is at most quadratic 
in momenta (i.e., in derivatives). 

1.3. The one-loop scalar action. 

in this section I will outline a loop-expansion procedure tot the effective action 
that explicitly preserves the invariancea of the tree action, i start by recalling element* 
of functional integration, background field methods and the derivative expansion-

Consider first • free scalar field theory, with Lagrangian 

C « i ( c W » V - m W ) . • - 1, - . . . W. (1.28) 

The effective quantum action is 

Smmitoffvt-** (1.29) 

where the tree action as a functional of p is given by 

SM - jfxCM - - i / r f W W A - W M W - ' V ( 1 » ) 

The inverse propagator 

a , ( » , y ) = («? + m , ) . ( « - » ) (131) 

can be considered as an infinite dimensional matrix including the space time position 
i as a matrix index. Then the integration (1.29) can readily be performed using the 
gaussian integral 

Jd'V-i'"**'"' » del - , / l M (132) 



wliiili H'"?1 f**r (!.£*) 
.Sa = ilndet "'A. (1.33) 

lor a (iciXHiuaMzable) interacting fkld theory, with Lagraugiiiit 

£ = \d,H>'V<?' - »"(v>) (134) 

tlw cITrctive action i«, in practice, evaluated aa an expansion in perturbation theory. 
In the background field method one expand* the functional S[p\ around a clauical 
background field configuration fm Setting v» = ft + <p: 

5M-SW+gL#-+i^|^V+ (135) 
Tlw Rot term in (I.3S) i» the elective tree action expreued in term* of ipa. The 
aacond term vaniakr* by virtue of the rliMJcal equation* of motion in the prcaence of a 
background field y*. M«arjrea*eIy,oneaddaaaource term/(^Vi)^'totheLagraiigian 
(1.34) which a w n that tlw aoiiaUona of motion are aatiafied fcr ¥> » Vo- The third 
tern in (1-35) deUiminM the one-loop correction to tlie effective action. Iruerting 
(1.35) into (1.29) give*" 

»Sb>»| + i l » d e t " , A + • • -S (v» l+ i iT ru .A + . •-. (1.38) 

iter* A ia the propagator w the pretence of the background field ipg; defining the 
(background field dependent) "mat* matrix* 

we obtain 

-/^«-n-p'+y«(-'9/ap))<="*- can 
By thu* expressing the inverae propagator in terma of it* Fourier traniform, the x-
integration* implicit in (1.36) become trivial, and aa the p-dependence reduce* to 
product* of ^function* one obtain*1* 

TrlnA-' = fdzj J0-Trki-P* + V{x - id/dp)). (138) 

The remaining p-iotegralion can be performed after a Wick rotation and a auitably 
denned expansion of the logarithm •» (1.38) with 

f / (r - ia /6V) = t/(i)-ia»c/(i)d/ch> ( ,+ (139) 

which give* the one-loop effective action a* a *erie* in increasing order* of derivative*"*. 



Ill llic rue of a M-alar lltMwy wild derivative tnti|tliiigs. the aUivc rmiii.ilî iii 
imikl be generalized to provide lit expansion thai, al each loop order, in niatiifolly 
invariant under field redefinitions. CotuitJer a general CT inodel with I lie l,agraiigtaji 

Under a change of field variables; 
32* 

«,• - Z-M, a„z* = jpd„v- (1.41} 
tlie scalar metric u redefined according to 

*,(*>) - *- (Z) - %&%.*» ( i « ) 

The integration HKIMIK 4*V in the exprminn (1.29) (or the affective action mutt 
now be replaced" by the i ttant nteaaur* d*Vdet"*f(y), and a covenant expansion 
ia obtained'*-3* by teplair.ij the functional derivatives »/*¥>* in (1 35) by covariant 
functional derivative* 6,: 

SM - %J + A^L,*' + b.b,S\jf^ *-• (1-43) 
At previously, the iecond term on the right in (1-43) vanitrn* by the equation* of mation 
(with appropriate covariant lourcc Icrme), and the third tern determine* the one-loop 
contribution wliich i* governed by the inven* acalar propagator1* for the theory (1.40) 
in the pretence of a background field configuration iff. 

«*.»> - 6.6,5^ - j g ^ - Itto) ̂ L « « - ») (1-44) 

where T i* the acalar connection determined in the uaual way from the acalar metric *. 
Explicit evaluation of (1.44) give*" 

Ao'(*.»> - -*,l*)l* + " + NfjH* - »). (145) 

with 
U!*g*DkD.VM, « | a fti„a,v»'ff'v>~. (1-46) 

where D, ia the covariant acalar derivative, analogous to the covariant functional deriva­
tive in (1.44), Ftt^, it the icalar curvature tentor, and 

M.M - Ml + itA**«P.+%(*>)B ( i«) 
i* a icalar field redefinition covenant four-derivative. Inaerting the above remit* into 
the quantum action (1.29) and using (1.32) we obtain 

Si 1 *"* = - ^ T r l n j - ' a - ' - -iTrln|J» + l / + « | 

= - i / < f j y ^ T r l n / 4 ( p . x - i 8 / 6 » (1.48) 

with 
Afcz - id/dp) = {i,0 - %? + 0 + R, (1.49) 



WIKYC, for JII ailulrary (iiMlnx-valiiol) (million /-'(x) = i-'tail*)), I •I'il.'j llw «irre 
»|MHiding barred Function by 

Fix) s F ( i - id/dp) = «-*»/*' f (x)e , 8 "' s ' 

= n » i - i v % T - . (iM) 
Tlie derivative expansion (I 50) ia not tenn-by-term covarianl under «alar field redef-
iniliona. An explicitly covariant expansion ia obtained30 by noting that if we define 

B = UAU-\ £/ = e - " ' * V , * ' » ' , (1.51) 

then 

/ ' | , x / i S i T r ' o 4 * / - , x / ( S ; T r l n B ' i i m 

where d* is dained ia (1.47). The equality (1.32) hoMa becauae B/dp acting on the far 
right of the integrand* makes so contribution, nor, by integration by parti, doea 0/dp 
acting on the far left. Under the transformation (1.51) the function. F, Eq. (1.50), 

BMOOCMfltM!* 

F s UFU-' = e-"'*F(x)e""'»' m F(z) - i[d, Ftf/Bp +•••, (1.53) 

which gives as cxpaoairat that ia term by term covariant. Furthermore, we have30: 

"(•», - 7»W~' » •(»» + G^B/dp,) (1.54) 
where the covariant operator G^l'p.d/dp) is defined in termi of the acalar curvature 
and it* covariant derivatives 

G%, - K-.4J?=s.¥>'«W*«S*(*>), 

G„ = ±Gr~lld„Gl„\dfdp, + . (1.55) 

Aaaemblinc these resuka, we may write the one-loop effective action, Eq. (1.48), 
in the manifestly invariant form 

2 

= A* x constant 

| /**/if£xrl«H», + G^dldpJ + 0 + ft) 

^j4txTr{A2lUlx) + R{x)) 

- i lsjA' [{V(x) + ftf*))' + |o^G*"] + «"»** »«™. <» «>) 
where I have perforated the momentum integration to display explicitly the divergent 
contributions. The leading quartic divergence ts Setd independent and therefore irrel­
evant aa losg as we are not interested is gravitational interactiona (i.e., in the value 
of the cotrnologfcal constant). For aupergravity modeli that I will consider in Sect. 
2 thia term is exactly cancelled among boaonic and fermionic loop contribution!. For 
the caw of a constant background field, 3„v>o = 0, we have R = G^, = 0, and the 
expression (1.S6) reduces to the familiar Coleman-Weinberg result3' for the one-loop 
effective potential: 

* t a ' U . » ^ o = - ^ i / « f x T r ( A 1 « V ) + i ^ N A f ' / A ' ) + constant), (1 57) 
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u-tlh IIK' iili'iililiralNHI M'te) = ''(vl f|W IIM* IM-M- <H'|H-nil<-iit tu>vs matrix. Willi IHHI 
constant background fit-Ids there is, in particular, an additional qiiadratii'atly divr-rgt-itt 
term projiortional to the scalar Hkrci tensor: 

TrR--Rnd„*'d>-y> (1.58) 

which represents a one loop correction to the scalar metric tensor g„ 

14 The (gauged) nonlinear a-modeL 

We can immediately apply the results el the preceding Section to the nonlinear 
a model defined by Eqa. (1-25) and (1.26). There is no potential so V m 0. and the 
scalar curvature ia readily evaluated to give"-31 

fl^-j,(*,fc*-.i#ii). (159) 

and the llkci lenaor 

where N ia the number of real scalar* »;, m in thia case proportional to the metric 
tensor. This i* hecanac the expression (1.2S) with saetric tensor (1.26) is the only 
two-derivative sarin that ia invariant under the Stf(2) X SU{2) transformations (1.23). 
Combining the one-loop result (1 56) with the tree Lagrangian (1.25) we obtain lor the 
one-loop corrected effective Lagrangian 

The lint term in (1.61) can be viewed aa a renormalixation of the pion field* and vev 
u: 

„„ - Z». v„ - Zv, Z> - I - ^ g ^ * * j (162) 

The second, logarithmically divergent, term involves coupling* that are not present at 
tree level. The argument of the logarithm is necessarily dirnenstonleas. However ia 
the maasleaa ff-modeJ, there ia no acale parameter to scale the dimeneionful cut-osT -
hence the question mark in (1.61). In tins theory, successive term* ia the derivative 
expansion are increasingly infrared divergent11, although S-matrix elements are well 
defined. Thus to a^ a seiwble answer we iruistresurne the expansion. The correct tour-
point scattering amplitude* can be obtained simply by dimensional analysis11: since H* 
and C are at least quartic in scalar field*, the only dimensionful quantity appearing 
in the formal expression (1.56) that can appear in the argument of the logarithm ia the 
derivative operator. Thus the last term in (1.61) should be replaced by 

~Tr |fl(ln ^ + « ) « + 5 C ( » ^ + «*)G-"] + Otf/A), (163) 

where a and a' are Constanta of order unity that cannot be reliably determined, aa 
discussed in Sect. 1.1 



-u-
H|M-I i.ili/iiu; In IIK* «"=IM* .V = '\ which is appropriati* f»« On? large m« liinii nf 

IIH- standard IIHHM(UHI furpiun physics), we obtain, for example, for the »*»" elastic 
scattering amplitude at one loop" (liere I «el a = a' = 0). 

Mi***- -» »**") = - i u / o 1 

;{3s'lo(AV - a) + 3taln(AV - i) + 2u ,ln(A'/ - u) 

- i |»la(AV - ») - j a ' M A ' / - 1 ) + j u ' M A ' / - a) + ln(AV - ()». (1.64) 

a reauk which haa beeaiobtained prevwuel'yM, uaing diHerent technique*, in the context 
afpionpbytka. lnEq.(l.C4)j,landi>acetbeiiauaIMandebtainvafiabtet'. J > 0 , u , t < 
0. The term proporlioaal to M A 1 / - *) a MA'/*) + '* eonUii" 'he abaorptive part 
due to on-abcM reacatteriag. 

In the large mH Baait of the electroweak theory, Eq. (1.64) can be interpreted aa 
the one-loop corrected amplitude tor the etaetic scattering of lonfitudinally polarized 
W+W~. The Uee amplitude*7 i .fi»eob^ the 6>H term in (1.64), which contribute, to 

X*M^ 
Figure 3i Vector boaoa fusioo pro-
C*M far diboaoa production via ttrong 
Wt,, Wt reacattering in fermion colli-

1 '" 1 • M J I M M H I 11 ta*r 
ftfaahwWM f*U 

• M • w N v it— m m . -
- -
- -

M M 
-

aw 
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Fiaura 4: WtW£ aad ZLZL •»«» productioa rataa» la n> collHion* at y/i = 20 
awl 40 TeV with a rapidity cat M < 1.5 aad a cutoff A = 3 TeV. The amplitude. 
have been «aRari**d aa described ia the text. 

W W s^ T_ 

Figure*: Dibcaoa production via fermion-
aatifennioa annihilation through renor-
malizable gauge coupling*. 
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j iliid pwAVc »ratu*rillg only The one hmip «Hfc*tHHi contains «H |ia(tliil w^vi-a | . i * 
ucJJ «« a comparable *lll|•Mludc , , for cfiUlH' 2£ trallrritig, wlmli vanillic* *i Iror 
Icvcl) «i)J therefore lepceaeui* • mure tcalitltc acallciing model l lu t incorporate* the 
cancel lyimiieiiy end analylicity prupcilica, alllwugh it ia not fully unitary. For WW 
center of ma*a »cattcring cnergie* JMW < I TeV, uniterily correction* ere ex|»evtcd 
to lie important only for ihe lowcet (») partial weve. Including • correction" for thu, 
expected yield* for eft - • ( Z I Z L at W£W£) + anything, vie the fuaioii proccaa of 
Fig. 3, ere ahown in Fig, 4 far e rapidity cut |y| < 15 and ff cm. energiea of 20 
and 40 TtV, where they can be compared with predictiona' uaing (unilerixed) true 
amplitude*. 

The one-loop correction* ahown in Fig. 4 are eurprieingly large, and one may 
queation the uaefulneea of tlie one-loop approximation. The cxpanaion parameter* arc 
effectively J ( H V / ( 4 I U ) ' and (A/4*v)* , ao the aeriea converges for Jay*/, A 1 ~ (4av) > — 
(3 J'cV) 1. Thu* if A * 3TcV, the rendu of Fig. 4 ahould be reliable ill Ihe energy 
range m ( . « sww « A' , and wiN cease to be meaningful above the acale A of 
"new phyaica* which could take the form of a liigga acalar (or broad resonance in the 
I - J - 0 channel if mH & Te l ' ) o r * richer reaonanceaoectnim. In the region tww < 
A 1 , the experimental aignalute'*' for atrong WLZL interaction* i* en enhancemeail of 
WW, ZZ and WZ production over what ia expected from the acaling contribution from 
ua annihilation. Fig. 5. For m * - . oo, Ihe tree contribution of Fig. 3 waa found to 
exceed of annihilation for Jiww £ (1/2 - 1)T«V; Ihe one loop correction* yield an 
even larger strong interaction contribution ia the aubreeonaace continuum region. 

If we interpret the reauka of Fig. 4 and Eos. ( I 81) ( I «4) aa applying to 
the large I I I H limit of the atandard mrcSei, the underlying theory ia lenormafciable. 
We can compare thaae reaulta with lltoas obtained by calculating in Ihe Unit* m a , 
teuorinalixabl* theory, and then taking the large n « lanaat. For llue purpoee, we atari 
with the linear ? model of Eq (1.10), in which caae we have 

H - G . . - 0 . V „ - ^ + 0 . U.65) 

where I identity (v%,?>, - - ' , *>«) B (e>, *,, •• •,««). The expanaion (1-56) now give* 

C i - u , - ^ ( A ^ r r W - i T r l 7 » m A ' + &i iUlernie) , ( I . M ) 

which, in particular contain* no divergent derivative term*. 

Now consider the limit A - . oo. h i * convenient to introduce the variabtee f 
and I,: 

( M \'" 
£ # M (1*7 ) 

The potential i* independent of the Goldatone modes #,; exciting thcee mode* with 
zero four-momentum coata no energy, even in the limit A -« oo. However, for *• j * •> 
the potential energy ie infinite. Aa diacuaaed in Sect. 1.2, p remain* fixed at ita ground 
mate value: i>* m a1 + a* » u'. In other worda, lo evaluate Ihe elective action (1.29) 
we may introduce aource terma for Ihe #, but not for ». Impoaing the claackal expiation 
of illation for #>: 

„ ts foots a»'*5\| , t M , 
o a i >=Us + ^*vJL ( l 6 8 ' 



- J < 1 -

we can cliiiiinate the liackgiouiid lirld a » o^m^^m^ in terms t4 the tMtIs a, am! 
tlwir ilerivalivca. 'Hie integral in (I 56) (ur (1.31)) u most easily performed by first 
diagonaluing the "mass matrix" (/(x,cfs). Tliere is one eigenvalue 

-raj" » i ( 3 / - v*\ —^ oo (I 60) 

that flows with AanducciiuplrafuploafkU mucpcmkiiltomnbulioii) forii^ >> A 3, 
and N eigenvalues 

"«£" » *(»» - u') _ . finite (1.70) 
that remain but* in the limit. Since we arc working with • renormalizable theory 
we can interpret A aa the renoraaalizalion scale. The elective theory obtained for a 
particular choice of A m then a. good approximation far energy scales in the neighbor­
hood of A, ami only light eigcaaiodes, |"m*| ~ A, contribute to the loop integral] for 
tha effective theory. Wc expect the affective Donrenormalizable ff-niouel to be valid at 
scale* much smaller than the iliggs mass m« s "m,(x,&r)", i.e., for 

-mj* « A' « "m*". (1.71) 

Indeed, whsr il.M) (or saera precisely (I 37)) is evaluated by taking the limit m. -» oo 
before tha limit A -» oo, f t* previous result, Eq. (1.61), is exactly reproduced*'3*. 

Tha large injf ksnit of the standard dectroweak theory is, in fact, a gauged 
nonlinear e-atodel. The grnrralirilinn of the above results to include background 
gauge fields A, is easily realised by replacing ordinary space-tinie derivative* by gange-
covarianl derivatives: 

B, — D, = 9 , + iA, 

Than the expression (1 55) far G^, ia modified to include a term proportional to the 
gauge field strength 

G~ = l<t..4.| = • * ; , + (173) 
and the logarithmically divergent contribution in (156) proportional to CP includes a 
term 

G„G~ = e ' f ^ F - (1.74) 

thai contributes to the one-loop ^function3". 

To fully desersaiae the one-loop action, however, we must also include internal 
vector boson loops. This is complicated by the fact that wlien Hie tree action is 
expanded, aa in (13*) or (1.43), up to terms bilinear in the quantum fields (or functional 
integration variables) there are in general vector-scalar mixing terms: 

3 j>*¥s4(.8"ip- + A c = - f fxiVlAseo) + * c. (1.75) 

To evaluate the elective potential31 with y*=constant, A, = 0 one usually works in the 
Landau gauge, 9„A* - 0. so that the last term in (1.75) vanishes identically and tliere 
is no vector-scalar coupling. When nonconstant scalar and vector background fields are 
present the situation is more complicated and one must find the gauge condition most 
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aj»|)to|»rtati* &«• *l*e sgM*rilff inUnltfum Tin* raw* relevant l*» ll«* large w$t *laitil.tftt 
MHHII'I, namely llie globally .s'f'(2) » 547(2) syinim*lric iHtfilincar a %WHU-\ t'luUiMi^l 
in an 5f'(2)i, x 5( f ( l ) gauge group, turns oui, t«i lie partkuUrly aHiipIu.iUil, l>ul lias 
INVII folvctl". The divergent ccHilribuliofls to the effective scalar ami gauge IMMHI 
action have been deicrniineti, giving ait expression of the form* 

+c(V!»D»v) , + " )+Suite terms. (1.76) 
The fir«l three term* in Eq. (1.76) can be interpreted ss renomialization of fields and/or 
parameters of the tree Lagrangian. In fact part* of theae logarithmically divergent 
contribution! remain divergent for finite m» • In particular, the coefficient a determines 
the 0 function for scales intermediste between mw and ma. 

The dots in the coefficient of In A 1 represent terms at least qusrtic in the gauge 
and scalar fields. According to the equivalence theorem of Sect. 1.2 we can calculate 
5-matrix elements by interpreting A, as a held operator for transversely polarized 
vector bosons and the ", in the expression (1.9) for ip as field operators for longitudinal 
bosons. An examination of the exact expression a*'*1 for these terms shows that there 
is a factor of the weak gauge coupling constant f for each external transverse boson, 
and that the vertex functions with no external A„ arc precisely those obtained in the 
ungauged model. 

In other words, the only divergent correction from gauge loops to the effective 
scalar action of Eq. (1-61) comes from the fourth term in Eq.(t.76), which has been 
identified" as the only two-derivative term that is SU(2)L X 1/(1) gauge invariant but 
breaks global SV{2) X S(/(2). it also contains a correction to the parameter 

>>5 m^/mJ cos1 #„. ( I '7 ) 

In the unitary gauge: 

( v ' 0 . v ) ' U = - I ^ ; Z . z - , (1.78) 

which contributes a shift in the Z-mass but not the W-mass Using the explicit value 
found3* for c in Eq (1.75), one gets for the correction to the ^parameter (1.77): 

,_ 1 =ggta»»#Jn(£) +»»ite (,.79) 
which is well within experimental limits: |/» - 1| < 0.004 if we take A < 3TcV as 
discussed above. Conversely, experimental limits on |* — l | assure" that this term 
cannot contribute significantly to the WL, ZJ. scattering amplitudes. 

If we now set A* = mj, in Eq. (1.79) the result is precisely that (bund1* by 
taking the large mH limit of the one-loop corrected ^-parameter as calculated in the 
renormalizable (finite mH) standard model. Similarly, the logarithmically divergent 
four point functions (i.e., dots) in Eq. (1.76) agree3* with previous results3* found 
for those contributions that grow with In m» as calculated diagrammatically in the 
standard model. 

We have thus established that one-loop effects calculated in the effective non-
renormalizable theory defined by the m H -* oo limit of the standard model agree 
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wilh llu- Luge iittt limit <if »«ic l<Kjf» calculations evaluated using the reimrmalizahle 
theory. This result h-nus a degree of credibility to the loop expansion <if tlie effective 
iHmrcnoriiializable tlicory. 

On the oilier '•and, the results sliown in Fig. 4 are of much more general 
validity than the standard model. If the scalar sector possesses a chiral SU(2) x 5(/(2) 
symmetry, as mentioned hi Sect. 1.2, the leading behavior of low energy S-matrix 
dements are necessarily those determined by the effective tree Lagrangian of Eqs. 
(I.2S) and (1-26). There is only one possible gauge invariant, chiral symmetry breaking 
correction (Eq- (1.78)) to this low energy behavior and it is constrained to be small 
by observation: ^ s L The effective tree Lagrangian (1.75) is therefore universal1' up 
to corrections of order U — l|, and so, therefore, is the divergent part of the effective 
one-loop Lagrangiaa. 

If in Eq. (12*) we replace •> by / . . the decay constant for * -»tBt, then Eq. 
(1.25) is the effective Lagrangiaa for pion physics, valid at energies s,„ ~ m J i.e., the 
resonance region in pion scattering In this case the underlying renormalizable theory 
is (approximately) in sulfas QCO, with Lagrangian 

"r 
f g c p » £ # . T B ^ + G ^ C r (1.80) 

where Np m the suaasber of quark lavors, GĴ . is a gluon field strength tensor and the 
covariant derivative is D , = f?„+rj. A -Aft, with \° a 3 x 3 matrix operating on color 
indices. The Lagrangian (1.80) is invariant under global flavor SU(Np)L x SU{NF)R 
transformations on quarts-

+LA--'<flJ,x'<(>LM- (181) 
where \ r is an NF x Afs- asatrix acting on flavor indices. Empirically, the first gener­
ation of quarka is very fight, m„mt a 0, so chiral symmetry is a good approximation 
foe HF = 2. Experimental data teds us further that the vacuum is not chiral SU{2) 
invariant. We attribute this observation to spontaneous symmetry breaking; the vac­
uum energy is lowest for < •>•> >ff 0. The quark condensate < $<!> > is not chiral 
invariant; iU presence break* chiral SU{2)L x Sf/(2)n to ordinary flavor 51/(2), i.e., the 
subgroup of transformations (131) with QJ. = OR. Spontaneous breakdown implies the 
existence of rnassless Goldstone basons, which are assumed to be the (almost) massless 
pians. Chiral 51/(2) dictates that their low energy S-matrix elements be determined 
by the chiral invariant Lagrangian (1.25), (1.26). Loop corrections" then generate 
the one-loop elective contribution of Eqs. (1.61) (1.64), where the effective expansion 
parameters are now » „ / ( 4 * / . ) 3 and (m, /4s / . ) ' . 

Technicolor is a nonstandard scenario for the spontaneous breaking of the elec-
troweak gauge symmetry based on the extrapolation of the observed nonperturbative 
phenomena in QCD from the scale AqcD ~ lOOJMeV where color couplings become 
strong, to the scale •> ~ "OOGcV of dectroweak symmetry breaking. One assumes a 
new gauged technicolor interaction among techniquarks yV and techni-gauge bosons 
AT that is asymptotically free and strong at a scale A T C ~ 250 OeV. From the 
observation that 

<U>~^%CD~il~imM'Vf (182) 
DOC infers that 

< Mr > ~ Ajc ~ « 3 ~ (250 GeVf. (183) 
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TIIL* measles* (,old*tone bosons are leciiiiiiiioiis, xr. the anakigucs of imMis. Tlic n-clini-
quark* are assumed to carry i'('(2)i. x (/(1) quantum numbers audi that the condensate 
(1.83) aliu breaks the dectrowesk gauge symmetry. Tlien the lechuipions couple lo 
the weak gauge baaone via the effective gauge invariant coupling (1.19), so that the 
It' and Z acquire mattes and "eat* the tediniptoni which become tlieir longitudinally 
polariied components. Ttie equivalence theorem of Sect. 1.2 holds by construction, 
and chiral Havor invsriance of the technicolor Lagrangian implies that (l.25),(l.'26) is 
the effective tecliuipion tree Lagrangian, Thus the results of this section apply specifi­
cally to technicolor models, and the yields of Fig. 4 are correct at energies bekiw the 
terlinirlio resonance mass where, of course, cross sections will rise dramatically. 

The phenomenon of ftrmion condensation ia a strongly coupled nofiahdian 
gauge theory has also been invoked as a possible mechanism for breaking supcrsym-
m«try," ,J! u wiH be discussed in my second lecture and the lectures of John Ellis." 

I.S Supergravity and the gauge hierarchy problem. 

The gauge hierarchy problem can be simply staled by noting that scalar masses 
have quadralically divergent loop corrections n nonsupersymmethc renotwialiiabls 
theories. In general, if the theory rioiimss ahmenlary scalar fields «», the one-loop 
corrections wiH include mass terms: 

£,-*,* •£-,<?• (i-M) 

Technically, the term (1.84) can be reabsorbed into a rsnconshialinn. but the eppsar-
ance of scalar masses mock smaller than lbs natural scales of the theory, suck as ike 
grand unification seals PHOT or the Planck ocale mp a becosase vary ertilcial. More­
over if the ultimata theory • including gravity - underlying observed physics is a Iruta 
rattier than a renormaliiable one, aH mass pararectal* must be rskillaMe in urns of 
llie fundamental length scale (e.g., s i s "') of the theory. 

In a theory with unbroken supersymmetry (SUSY) i s t ideotkaHy in Eq. 
(1.84) because there is an exact cajKeMation between boss and fermi loop cotributions 
to the scalar mass. Since SUSY is necessarily broken, the rsnrrnslim cannot be 
complete, but in Che context of broken SUSY one anticipates an saTectiva cut-of A ~ 
mousy, it., the scale that governs bc«»a-ftrmiori mass splittings. 

The scalar sector of the standard model, Eq.(I.S), is weakly coupled if the 
coupling constant A is small, A/4* ~ 1. implying for the physical lligga mass, Eq. 
(1.18), m H ~ l T e V . There is in fact no experimental evidence that the Higgs sector 
is not strongly coupled. On the c4ri«liar>dc4ic must ukiautdyur>lam trie kliown scale 
of eleclroweak symmetry breaking, w is 1/4 TeV. It is unlikely that this scale is orders 
ol magnitude less than the scale parameter of the elective low emrgy scalar Lagrangian, 
even in the strongly coupled limit. In other words, experimental observation requires 
an effective cut-off less than or the order of a TeV. 

In addition to SUSY, scalar masses (as in technicolor models) can be protected 
by spontaneously broken global symmetries. If f is the Goldstone boson of an exact 
symmetry of the Lagrangian that is spontaneously broken, it is necessarily masslesa 
and again a = 0 in Eq. (I 84). If there is a small explicit breaking of the global 
symmetry, y> can acquire a correspondingly small mass. Consider for example, the 



( fCI) l.agr<mgiaii. l£t|.(l.t>0), but with (piark ma»»etf included: 

CQCO = Aico(">« = 0) — »n„uu — mjdd •••. (1-85) 

The nonvaniehing n u n lama m w j l )t 0 explicitly break SU(2)L x S(/( '2) H . An empir­
ically good formula lor the pion maac ia: 

raj i= ^ m j s « A ' . (1.86) 

llcr* the pion aaaaa ia governed by two electa: the Kale A ~ m , where the elleclive 
pioa theory (1-25) breakadown and the ratio a = " i , y / / . of explicit to spontaneous 
symmetry breaking. (There ia no factor (4»)~* in (1.86) becauae mu/l f 0 ia a tree 
level effect.) 

Now conaidet the minimal coupling of N teal acalar fields to gravity, with the 
action 

So^ftxJ^W^-TfR). (1.87) 

H a n * ia the epaca-tiaac anatric {J§ m d a t > / a f ) and A ia the apace-time curvature. Loop 
correctione to the action (IXI) will generate divergent contributions to the acalar nelf-
energy. Fig. fa- In the aupcreymmclriicd gravity theory, or unbroken aupergravity, 
the contribiilinaa of Fig. fa will be exactly cancelled by the graviiino (C) exchange 
diagram* of Fag. *%>. 

.*..^_..«...t.0!» .... .*.A*..,..oft. .... 
Figure dt Coairibatiaaa to acalar (y>) eetf aaatgy bom (a) gravitoa (G) and (b) 
jravttiao{C) loose. U Kg. a * x, is Uw fcnaioeic superparlMr of V i , 

Figure T> Two-loop coatrifatieaa to F i g u r e * ! Gravitino-loop coniribu 
acalar •inTestirraigh rnmfcisiitgiaga twos to the gaugioo mass; 4 is a gauge 
and gravitational mtrrartioaa, which boaon. 
auy he aayrojumated aa a one loop 
coatrieatioa with anavaaiahiag(atoae 
loop) gaugiao (J) mass. 



Wlu-it SUSY if Inokcii t\w. gravitiiio ac<\uUr* » mass, tn& ^ 0, .-tint lln: * ant t|lali<Hi is 
no Knificr nHiipMc, Tltcii <>IIC rxiwrU a (<|iimlratirally 4.iviT£ciil) t oiitiil.iititHi In UKT 
scalar mass leim: 

. » 1 ~ ^ A (I8«) 
" 16*" MI}. 

where A if tlie appropriate cut M. I( A ~ nip, elect row rak phenomenology requires 
m r t ~ lO'ief. 

However the acliiHi (I 87), as well as iU supcrsynimetric extension, i* invariant11 

under global SO{N) transformations aiiM«ig the *>. 'fhua to all orilers the effective 
quantum action will depend on tlie scalar fields only through SO(tl) invariant quanti­
ties: JvP = Ej y>', £•oVv'3'V'i etc If the vacuum energy of the tlieoty ia lowest (or 
a value < M ' >jt 0, SO{N) will break spontaneously to SO{N - I), producing N - I 
Goklilone batons. Thus, mty one of the v**» will acquire a mass of tlie order of (1.88) 
while tite N — I others will remain niasswst to all orders. 

In the real world, scalars have isHeractioiit other than gravitational ones. In 
particular there are gauge interactk ns that explicitly break the SO{N) symmetry of the 
action (1.87), so one can expect • priori a (mild) suppcfinn factor a ~ o , where a ia 
the gauge interaction line structure contain. Suppose, however, that SUSY it broken, 
so ma j* 0, by the vev of a gauge singlet scalar. In the absence of gauge couplings 
S0{N) a an exact symmetry of '.be Lagrangian, to the diagrams of Fig. 6 cannot 
generate scalar masses. On the other hand, if SUSY breaking it not communicated 
at tree level to the gauge sector, i "., if the gaugino miasm (mi)*.. = 0, gauge loop 
diagrams (tee Fig. l ib below) vanish by supeftymmetry. At the two-loop level, gauge 
interactions that know about SO{N) breaking, and gravitational interaction*, that 
know about SUSY breaking, can combine, at in Fig. 7, to yield nonvanisliing gauge 
mmsinglct scalar masses that one might estimate34 as: 

m J ~ O j ^ ; 4 . (I«) 
requiring 1114 * 10* GcV if A ~ mp. One can estimate the two-loop contribution of 
Fig. 7 as a two-step process. First calculate the one-loop contribution. Fig. 8, to the 
gaugino mass (the blob in Fig. 7), mad then use rertormauzation group equations to 
obtain the low energy value of lire scalar mat***, which should be of order 

m;~£mj (1.90) 
The two diagrams of Fig. 8 separately give contributions of the form. 

"'» = jE$AV"* + (S)il m S/ m '> ("-(AVmfc) + c] (1.91) 
For o / 0, using (1.90), we would get the estimate (1.89). However, tlie divergent 
contributions (nun the two diagrams of Fig. 8, have been found3* to cancel identically. 
Then if c ^ 0, using (1.91), we cbtain instead of (1.89) 

»'l~J^>»%f'»r. 092) 
requiting only m,} * 10~*inj» ~ 10M GeV. Thus a large hierarchy for electroweak sym­
metry breaking could arise from a rather mild hierarchy for SUSY breaking relative 
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lii llir l*i,tiMk si-alt- In fori. MiliMi|iH-iit ralrtilalifHlsJ,'-',? slimvi-cl that the two (-omri-
liutHHis of Fig- » ••> the gaugino mass cancel completely. In my second lecture 1 will 
iliscnss otiicr sources of ganginu masses at oitc loop. 

Tlie above discussion ia still unrealistic in that Yukawa couplings, which also 
break the 0{N) symmetry of the action (1.87) have still not been included - they 
are indeed ncceaaary in tbe standard model for generating quark and lepton masses. 
Moreuver, for a nonminimal gravitational coupling, i.e., for a nontrivial scalar metric, 
fu gft i,„ the gravita "anal action ia not SO{N) •ynimetrk. It may however, aa for the 
0-modd of Eos. (I 25) and (I-2S) poMea* a nonKnear synunetry that could play the 
same role. This is the case for a class of superstring inspired models, to be studied in 
Sect. 2, that possess a OTilinrar aoocotnpact global symmetry of the kinetic energy 
term. 

A compact syassnetry, s u a as SO(N), leaves invariant the form £ ? yj? under 
linear tranaforasaticM, awl, ia particular, the canonical kinetic energy 

£ K * - 5 E * » V W (193) 

is SOiN) invariant. A anaasaput synunetry, such at SO(m,N-m) leaves invariant 
the form £ ? vt — TSUt *"• «••»* linear transformations. The corresponding invariant 
kinetic energy Ursa 

is physically warcrptahW as it mnfiias "ghosts". Only nonlinear realizations of non-
compact symmetries asanas; scalar fields can lead to physically acceptable theories. For 
example the I sgraagisa 

C^-*^-™****"*. .•-0,...,i. (195, 
l» - VHrY 

where the <fi "* O")' are rV + 1 rnmpin acalara, is invariant under nonlinear SU(N + 
1,1) transformations This caa be seen most easily by writing (1.95) in the form 

CKM. - d^P^Ci, 6} = g^6(v.v). (1 96) 

which, as ducussed by Eaw,M is the most general' form for the kinetic energy in 
N + 1 supergravity theories. The real function C(<P,v) " 'he Kihler potential. For the 
Lagrangian (I.S6) it is given by: 

ff = - ln ( l -«V) C 9 7 ) 
which is obviously invariant under compact, linear SU(N + 1) x t/( I) transformations. 
The remaining 2M 4- 2 transformations of SU(N + 1,1) are characterized by /V + 1 
complex parameters «* of t i e coset space Sf(/V + I, \)jSV(N + I) x t/(l). Under the 
non linear transformations 

•Vi = Oi-¥>.aVj (198) 

the Kihler potential is not invariant 

« = ov> + #a . ( IM) 
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Uuwevcr, *inrc it* vari«ti«m it a mm of function* of v> and of y*. 'be K*lik-r uu'irir £ ' 
H I J the heme kinetic energy U-roia are invariant. 

In W + I aupergravily tlitwie*, a* di<cuued by EIIU.1* the scalar potential (in: 
glccting gauge-induced D-ternw) i* derived fioni the Kahler potential1*' 

ft-Jj| *«•'>'. (I.I80) 
For the Kiiiler potential (1.97). V'(v>) i* invariant under linear £ ! / ( * / + I ) transfer-
•nationa, since Q m, but it w not invariant under '.he nonlinear tramfcTmalioaa (1.9V). 
The Yukawa coupling*, which arc aimilarly d e r i v a i > u * from the Kablcr potential arc 
aiui not invariant. 

However the form of the kinetic energy term (1.95) docs not uniquely determine 
the Kahler potential To obtain an alternative Kablar potential we auks the duuuje 
of Held variablec, 

T - 5 | 4 J f l ! ' c ' - i ~ - • - • • • •"• <•"»> 
TlHm (I 97) become* 

c« -»(T+t-c,c.)+/(v»)+/(#). (urn) 
The firat term in (1.102) appear* in the Kihlet potential for "no-acale* aupatgravity 
modeli" aa wcH a* some auperatrin(-ia*pired mod*!*.**- 4 1 I f huleid of (1.97) we lake 
the Kihler potential 

fl--ln(T + f - C . r » (1.103) 

we obUiit the •am* kinetic energy, (1 •»») "hick ia SV(N + 1,1) iavarutaS. The KaMar 
potential (1.103) ia invariant, not under S(/(,V + 1,1), but Mad** 4 * 4 * a nnafompact 
lleitenbeff (roup C « of nonlinear (Job*) tranafbrrnatuM. 

Ci-C. + o. 

T-*T+e€+ -oa + iv (LW) 

with W w i p l e x perimeter* <», and on* real'parameter c o C i compact axial ( / ( I ) 
symmetry: » I n T — eaneUnl. A *up«(ravity theory dnined by the Kakler potential 
(1.103) i i , for vanishing gauge cor filing conatant, fully invariant under On which can 
he *hown 0 to imply % > 0 to an ordeni. 

Neither (I.S7) nor (1.103) define? a Ibaory with realittic Yukawa raipKoga for 
tlie low energy theory. The claw of nupmtringinapired model* that I will study ia the 
following lecture have a Kahler potentia' of the form:*' 

0 = - 3 l n ( T + T - \C\') + In WijC, 4 h W{C) •* - . (1.105) 

where She duta refer to function* of fidkl* other than T and Q, and the super potential 
IV(C') gtlv.;atoi the ohaerved Yukawa coupling* of the gauge noaaingSel aeclar C. 
Both rr'(C) and the gauge coupling* break invarianc* under ( l . l fH) . Never'.neks*. 
u duKuaaed in Sect. 2 below. OH invariance of the function (1.103) at sufficient4* U> 
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|WIHM:1 tcaldr ui*uo mi- at one loop in the class of models ikliucd by (I 105) that 
have a vanishing rosinulugica] constant at tree level. 

2. Superalring-lnspircd Supergravity Models 

2.1 An effective tree potential. 

In moat of tiiia lecture I will study a prototype model obtained by a simple 
compactificatiou of lO-dimenaional supergravity, with nonperturbalive SUSY breaking 
elfecla incorporated.1' At the end I wiH discuss the generalization of the results to 
• class of more realistic models. EalisM boa outlined the steps used in constructing 
the prototype model. Here I shall recall the relevant physical aspects and present the 
rcaultiiwr potential. 

Cnsxnaflificslioa front tea to lour ; .meneione generally entails a number of 
scalar ficUs sasnrillsH with the geometry of the compact manifold. In particular there 
la the dilt'oa Celd y* rdatad to scale transformations in 10-d supergravity, and the 
brcathine; show* m aasririslarl with luctuations in the size of the compact manifold. 
The particular rnsnhiaslinaa 

I f c S - v i ' V . JfeT.^V^•|hPl^ (2.1) 

what* last N c-aaplex; Cstds if, an gangs annsinglars, are the scalar members of two 
chiral supermuhiplsls. la addition there arc other gauge nonaingtet scalers associated 
with the dslsilad topology of the compact manifold that I will commeat on later. 

The finssiiils relevance of these fields to phenomenology is thai a) tliey couple 
only with gravitational atreoglli to observed matter and thus provide the possibility 
of rnmmi unfiling weak SUSY breaking to the observed sector through quantum cor­
rections, and b) they are aasnrislsil with (classically) flat directions in the space of 
acalar field values. Specific sly, if SUSY is unbroken, thr effective tree potential in four 
dimensions is of the forma 

V - URCS. fUT)V{.v.) (2.2) 

with < Vfa) > • 0, so the veva of ReS tad RcT remain undetermined at the clan-leal 
level. 

la order to make contact with observed physics, the vacuum degeneracy must be 
Mfted w d SUSY must be broken by nooperturbative quantum effects. Two sources of 
nonperturbative SUSY breaking have been proposed30-31 in the context of the £» x £ , 
heterotic string.1 4 Willi Calbai-Yau compactjScation," for example, tine gauge group in 
four ifancnsimis in E, x E,, where E* is the gauge group of tlie observed sector and £', 
that of a hidden sector, coupled only gravitationally to observed matter. Both groups 
can be broken down further1' at the compactificatioo scale KOUT by loops of gauge 
flux (rapped around topological singularities in the compact manifold. The surviving 
subgroup of E. aunt contain the observed SU(3)C x SW(2)t, x (/(l) of the standard 
model for strong and etectroweak interactions. The hidden gauge theory is assumed to 
be a pure •upersynunetric Yang-MiHs theory which is asymptotically free and tlierefore 
becomes strong at some scaled- Tlus means thai, aa in QCD, Sect. 1.4, the gauginos 
of this strongly coupled sector may form a condensate: 

< AA >cx A jt 0 (2.3) 
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uliii'h liruiK* stiixTsyiiiiiii'lry1' (ait well a> a <liir«tl syimiM-iiy). In leu <limt-ttsi<nt.tl 
Miprrgravily there ie abo a field ttrenglh / / i j « v ( ' . M,/V = 0. •••.!)) Ilial is an anli 
•yiimwtric, rank-three Lnrrniz lentor. T I I M field may ari|iiire a iKHivaiiishiiig variium 
expectation value (t„m,fi s S • • • ,0): 

< J 4 . „ > o c e » * 0 (2.4«) 

that M I M A C * a quantization condition**: 

J dE*"" < //,». > - 2«i» (2.4») 

when integrated over a ckaed 3-aurfac* 5 of the Hx-dimenaional compact manifold. 
The vev (2.4) alas breaka euperaymmetry. Either (2.3) or (2.4) alone would induce a 
poaitive coanwlogical conatant. Combined they can contribute to the vacuum energy 
denaity in the form of a perfect aquarc" 

< f» >«< (M + /(«»»*)' > (25) 

which aho involve* the dilaton field y*. When one integrate! over the compact 6-
manifold to obtain the effective 4-d action the eiae of the compact manifold 

hour ~ « f < «"** > « mp < (RrS J O T ) " " * > (2.#) 

ahu appear!, and thereauhing potential dependton theecaler M d a S and T i n audi a 
way that, for taed valuea of the parametera c and n, the diginuacy in S ie lifted. Thia 
ia becauae it ia the 5-fieW that couplet in four dirnanaioaa to the gauge boaona and 
gauginoe. Aa a cooatquence tta vev determiiwa the unified gauge coupling conetant: 

< RtS > - UtaaurV*- (2.7) 

S|iecifkaHy, the fuH effective tree potential in that model take* the form:"-"-" 

Km-U + t + V (28) 
with 

V - (5+S)-*(T + f - •ItfVirr'M + c + Ml +w)«-*V i* ,| 1, (2J.) 

K-i(5+*)-(r+?-*WT'g0. (2»») 
p - DivriPirtT+1 - %rV(s+5)-'. (2.a=) 

where the matrices T" repretent the generatore of the observed gauge group on the 
cliiral nckk. In writing (2.9a) I have introduced the notation 

3fleS a 3lmS .„ , „ , 

where a, governa the ^-function of the atrongly coupled hidden gauge aector. The 
eupcrpotential W(y>) = ( rV(£)) ' it cubic in the gauge nonainglet fieldf. V and V are, 
respectively the P-tenn and D-term that appear in globally auperaynunetrk theoriet. 
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i.r., in the flat spare limit I»I> -# oo, if su|H'r*yiiiiiH.-lry is unbroken. E<M. (2.9) are 
cxpraacd in units of the reduced Planck man: 

l » B ! , » ( S » G w r ' / ' s 2 x i ( r ' , O e K (2.U) 

where C M i* Newton** constant. 

Each term in (2.8) is separately positive semi definite. V and D are minimized 
fory, - • and tliercfore vanish at the ground state. If the SUSY breaking parameter* 
c and A arc abacs*. WM » 0 force* V - 0 and the vev» of S and T are undetermined. 
When the supcrsymmetry breaking «*» <* Eo»- ( 2 3) and (2.4) are turned on the 
vacuum energy vasnshea for 

0 « A » 4 » n , n « 3!, (2.12o) 

u m <*-. c - -A(l + i* )«-« ' a . (2.121) 

(The choke of aga am Eq. (212b) nance* a CPinvariant f-vacuum, i.e., FF doe* not 
coatritwU to the quantum action.) The vev of T remain* undetermined at tree level, 
as doe* the value of the grantiao m a m * 

« * - < , • > - < (S + 5)- ' (T+f)- J |c+*«-/»(»> . (2.13) 

At tree level there i* thanaon a four-fold vacuum degeneracy; in addition to < RcT > 
and < f m T > . there i» a. two-fold dtgtnrracy in the parameter apace denned by c, h 
andh*. Weak*! now see to what extent thi* degeneracy i* lifted at the one-loop level. 

2.2 The Elective Theory at Oat Loop. 

The effective one-loop potential i* obtained by a covariant expansion of the 
quantum action with constant scalar background field* x, a* in Eq. (1.43), but where 
mom higher *pin loop* must be included. The re*uf t i* the Coleman-Weinberg potential:31 

V.„ - Ifcm + ^ f t r / a t f - V + *#'(*)), 

« , + M' (* ) -Z- , (* )A- , (p ' , * ) . (214) 

/»"*(•*, x) i* the propagator in the (.reeence of the background scalar field* z and Z(x) 
i* a held Jipiadsnt normalhstion matrix. For acalar loop* Z?t{t) » «>(*), the scalar 
metric, and **K«) m J*t irmnui from the second covariant derivative of the potential, 
a* daicimndmSec. I J . In a general supergravUy iaoMM the fermion and gauge boaon 
kinetic energy term* a n of aoocaaookal form. For example the fermion part of the 
Lagrangian is of the form 

Cr^WlZrizh-O+MSMW + OlteHOfi*?) a ? ( 4 , ' ) , ^ + . -. (2.15) 

and the vector part i* of the form 

Cv -;ja4*)J&F* ,* + \*l « ( * ) ) > * " + • 

«|i*;(aj ,)-a'*"'+ total deriv. +••-. (2.16) 
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(W"< 1 ,)1. = (/"'<'> ("J <0)Y'"(*)) n ( | P.I7I 
I work in the l*andau gauge, <>M„ = 0, so that, aa tliscussrd in Swt. l.-t, the gauge 
IKKHM decouple from the scalar (kills Similarly, imposing the gauge condition i"Vv = 
0 on ihe gravitino Add «»„ assures that it decouplea from ferntions. The relevant part 
of the gravitino Lagrangian reduces simply to 

£ d - - 5 ? ( l - a + m d ( « » * - + - . (2.18) 

With these gauge conditions the supertrace F of a function of M* is defined by* 

STY F(M') « 3Tr F(AfJ) + Tr F(Alj) - 2Tr F(M}) 
- 4 r > . J ) + 2F(4m£), (2.19) 

where the last term is the Fadecv-Popov 'ghostino* contribution. The integral in Eq. 
(2.U) is divergent and must be regulated by a cut of or subtraction parameter A. 
Neglecting terms of order M'/A 1 we obtain: 

V.//W = V.™ + 5— [nA'STr *f» + |sTr Afta(M7,A')]. (2.20) 

where A is the appropriate cut off and i) and » are prescription dependent parameters 
of order unity that reflect uncertainties in threshold factors and finite contributions as 
discussed in Sect. 1.1. 

One can extract some of the qualitative features at one loop, that art indepen­
dent of the precise shape of the effective potential, simply from dimensional analysis.'" 
The only diinensionful quantities ill (2.20) are the mass matrix M and the cutoff A. 
Since the potential has dimension four the one-loop contribution is necessarily of the 
form 

f , - ,« , -STrAfV(A<7A') . (2.21) 
We wish to evaluate (2.21) in the neighborhood of the tree ground slate, so we set 
<p, = 0 and /3 = A- Then the dements of the squared mass matrix M* are all linear 
homogenous function* of the SUSY breaking parameter* e and h: 

Al'fo = 0) - (fleT)-=ta(u)cA + Hu\k2\ 
» tfiRcT)-\(u) + 0(A), (2.22) 

where in writing the last term in Eq. (2.22) I have used the tree level condition (2.12b) 
and A is the loop expansion parameter. The effective tree theory with potential (2.8), 
(2.9) is valid at scales below the scale of gaugino condensation, i.e., the scale where 
the hidden gauge interactions become strong, which is determined by renormalization 
group equations to be, using (2.6), 

M - e -W- ' - 'AS^ fV -^A^ 
= (*-*-''*) (2.23) 
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m 1'l.iiitik iitii&» units. Driuiiiig I|H> variables 

X =<«=** (2.24) 

we have M* = jud.w), Af'/Aj = \S{u), ao identifying A* = A? in the superlrace (2.21) 
it lake* the form 

V,.u^ = «V(x.w). (2.25) 
Near ita pound stale <p, » 0 the tree potential ia proportional to a perfect square: 

» « ~ . f o - O f « < J i « r r 1 W e , * . i - ) p (2.26) 

with » - 0 when (2.12b) ia impoaed. Shifts of order ft from one-loop effect* contribute 
at Oik1) to the tree level vacuum energy. Therefore to determine the one-loop vacuum 
configuration we anal ooly retaio the contribution (2,25). Since tbia ia already 0(A), 
one loop correction* to the (round atate condition (2.12b) will alio contribute at O(ft'). 

At trae level there i* a three-fold degeneracy in the parameter apace defined by 
(AeT), (•>), h and e. Ttraa, aubject to the condition (2.12b), we mutt minimize the 
contribution (2.25) with respect to three independent variable* in thi* space, that I 
take to be «i, x and «•». The extreme of the one-loop corrected potential therefore occur 

g - g - 0 (2.27u) 

and 
n 3 » 0 c « / » 0 . (2.27*) 

Either of the condition* (2.27b) assure* that the energy-density vanishes at all extrema 
of the potential This implies that if the potential ia not positive semi-definite every­
where it is unbounded from below. If the function /(x,">) ia positive semi-definite, 
there is always a global minimum at u = 0, for which supersymmetry is unbroken and 
aH particles remain m i n i m . If this is the only solution it means that one-loop correc­
tions force the potentially SUSY breaking nonperturbative effect* to vanish. As higher 
order perturbation corrections cannot break SUSY, this is not a pbyiically acceptable 
solution. 

If <*c impose the conditions (2.27a) with u* f 0, / ( x ,u ) = 0 the function / is 
overdetennined and a fine tuning of parameters other than the dynamical variables x 
and u is required for wch a solution to exist. The theory contains no free parameters 
(such as coupling constants) other than the dynamical variables. This means that 
whether or not a nontrivial (n* # 0) •olutkn exists depends on the detailed wry in 
which the physic* of the, presumably finite, underlying theory enters to damp the 
divergent integral (2.14). In numerical searche*" for solutions to the minimization 
equation* (2.27) we varied the uncertainty factor* n and p using an approximation 
of the form (2.20) We considered a solution as acceptable if it occurs for plausible 
values of these parameters. If any such solution exists, and if the potential is bounded, 
it has vanishing vacuum energy and is infinitely degenerate, because the function / is 
independent of the parameter n that uetermines the scales of the theory. In other words, 
•f one-loop corrections permit a vacuum with a finite, nonvanisliing SUSY breaking 
gravitino mas* the tree level degeneracy is lifted in all but one direction (aside from 
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thc axion, ImT. direction) in Hie apace of dynamical varialdca. Thiu the ratio >n,;/A, 
is fixed, for example, but not the value of tti£. However lite quantization condition 
(2.-lb) .implies that this degeneracy is discrete, and that all scales are fixed !iy the 
topology of the compact manifold. 

I emphasize that, unlike the scalar rkkl degrees of freedom, A and c are only 
parameters—not propagating fields—of the effective low energy tlieory valid at scales 
below A«. There is a doubly infinite set of effective theories corresponding to possible 
choices for tliese parameters. Since they are, however, dynamical variables of the 
umk'rly tug theory they should relax or tunnel to those values that minimize the overall, 
fully quantum corrected vacuum energy. If there ia any solution to (2.27) with finite 
ui,} there is one for any value of », Eq. (2.21) and bene* for any value of c oc k + 0(h). 
Once c clioobcs one of its allowed values, all other vevs (except (ImT)) are fixed. 

I now assume that there exists a solution with finite gravitino mass. Soft stipcr-
syinmetry breaking in the observable sector can be probed by expanding the one-loop 
effective theory around the ground state field configuration a*. The y>, dependenca of 
the effective potential can be obtained by writing the field dependent mass matrix as 

«'(«)-A/»(s.) + AaJll2 + A. (2.28) 

The supertrace of an arbitrary function F(A1')) can then be expanded as 

STr F(AI') m STr F(A/j) + STr(Af(A/; 1)) + O/A'). (2.29) 

Since A » O(v'). the second term in (2.29) contains the quadratic and cubic y>-
dependent terms thai appear as soft SUSY breaking effects in the low energy, effective 
rviiorinalizablc theory. 

In the most general supergravity models supenymmctry breaking, ma jt 0, at 
tree level induces both nonvanishing scalar masses,1*''' proportional to mo, and "A-
ternw" which are terms of order i n a that are linear in the superootential W{<p). No 
such terms appear at tree level in the effective tree potential (2.8), (2.9) but they could 
appear at the one-loop level with coefficients suppressed by the loop factor (4*)~*. An 
explicit evaluation of the mass matrix (2.28) gives, however, for the potential (2.21) 
when expanded as in (2.29), the following result."-" If V.n is the one-loop corrected 
potential (2.14) and we define: 

V(c, r t e 7 » a V„fo. - 0), (2.30) 

then the ^dependence of 1/| is given by: 

V.iM = V(c + W%>).IUT- | M ' , " ) + <K*>4) (231) 

which is precisely the form of the ^-dependence of V„„ alone. In writing (2.30) I have 
nut used the tree level condition (2.12b). If we now expand (2.31) up to terms cubic 
in the <pi we obtain 

K„ = K„(v> = 0)-!v>l'f^£ 

+jH'(v>) + l V t e ) ] ^ 



+0(v>4>. (2.32) 
'flu-- ground slate conditio!.* OV/d HcT = OV/dc = 0 assure the vanishing of both the 
mass term ami the "A-tcrms*. Note that tltere is a quartic term in the expansion 

K,, 3 fM' jg4«^M« (233) 
that could lead to non-negligible SUSY breaking effects if m%,T is large. However it 
can be shown that this term disappears from the effective low energy theory for f, 
when the heavy field fUT is correctly integrated out.4 1'4* 

The vanishing of the scalar masses'0'" can be traced" to the invariance of the 
form (1.103) under the llcisenherg group G,i introduced in Sect. 1.5, as I will indicate 
•nore explicitly in Sect. 2.4. TlievanislangoftlieA-tetn»4> is less transparent, it occurs 
only when one numnocs the potential with respect to the parameters c and A, as well 
aa scalar vevs, and is therefore related to the vanishing of the cosmologies! constant. 
Large rwnvaniahing A-tcrms with vanishing scalar masses would be a pbenometiologtcal 
disaster, since all gauge arjaeinglet scalara could acquire veva, breaking, in particular, 
color and electric charge conservation. 

Another possible source of soft supersyminetry breaking is gaugino masses. 
Since gauginos transform according to the adjoint representation of the gauge group, 
which ia real, their masse*, aa for scalar*, do not break the gauge symmetry. There 
are two sources for gaugioo misses that are generated by radiative corrections. The 
first ia from one-loop gaugino self-energy diagrams,*137 Figs. 8 and 9. As mentioned 
previously the diagrams of Fig. 8 cancel exactly, as do those of Fig. 9a. 

, - -s 
+ -

» <u 

Figure • : Oae-loop coatributions to the gaugino mass from (b) the scalar field S 
aad (a) its ckiral superpartaer XI-

The quadratkally divergent contributions to Fig. 9b also cancel and the result gives a 
contribution3*-" of order ms ~ m j ln(K'/mj>). 

In addition tlicre ia a "tree-level" gaugino mass induced37'" by the shift at one 
loop in the tree level relation (2.12b). In the model31 considered here, tlie tree-level 
gaugino mass is given by 

(m,)„„ = < e f l / 1 ^ ( S + S) > = < U»* >= O(A) (2.34) 

wlicre 0 is the Kililer potential and U is defined in Eq. (2.9a) or (2.26). If, for example, 
u, = u\, + <u> is tlie vev of u as determined at one-loop, with uo given by (2.12), we 
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The shift &uf it determined by 

Writing (/ in the form. (2.26). we have 

^ U . . = 2 ( * r ) - ( | ( M , ) ) ' * - + o ( » ' , , 

*m, oc *w ct ±j j= L - » • (* M) 

Wlien adding these two contributions care must taken to treat all divergent integrals 
in a contiitent fashion. This can be done by evaluating the effective one-loop action 
in the presence of constant background gaugjno as well as scalar fields- The term 
bilinear in gaugino fields, evaluated at the scalar ground stste configuration, can then 
be identified with the gaugino mass term. The result found* in this way is that 
the two contributions to the gaugino masses cancel identically when one imposes the 
minimization conditions (2.27). 

To show how such a cancellation can occur I wiH briefly outline the calcula­
tion. In the presence of both boson (?) and fermion («̂ >) background fields the inverse 
propagator can be written in the form* 

A-' = / > . 6 i S B - U * l Z ( P + «)W (2.38) 

where i, j refer lo all quantum field degrees of freedom, Z(y>) is the normalization 
matrix introduced in Eq. (2.M) and 

PsB^tM1{ V ))B + T(n 9 + MF{vW, (2.39.) 

i = Bi,FT + TiruB + 0i»B + fiFFr + OH?). (2.39s) 

In Eqs. (2.39) 5 and T are projection operators on, respectively, the boaon and fermion 
subspacea in the space of quantum fields (i.e., the functional integration variables «V,?)-
Eq. (2.39a) determines the propagator for v> - 0. The ^dependent part is expanded 
in Eq. (2.39b) where 0 » F and br* are linear in «> and imm and *W are quadratic in «V. 
The effective one-loop Lagrangian is given by 

£ . - ! - , = | l n / « W v i d e t " , Z M e ^' 

= -iSTrln(P + «) 

= - i {STr In P + Sir p-'6 -^STr p-'tp-'i + 0(* 4)}. (2.40) 

The first term in brackets gives the effective one-loop bote Lagrangian, in particular 
the effective potential. It represents a sum of one-loop diagrams with any number of 
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fcniiKHi BIB*. 'Hie MTWHI trrin has a ck»ed scalar or fermtoii lino as in the second 
diagram of t-lg. 8, 9a and 9t>, while the third term has one boson and one ferinion 
internal line M in the first diagram of tliese figures. It is however easier to evaluate 
these terms by making a change of integration variables: 

* - * = * + (•- ,-»+ AI>(V))"'<I>F- (2.41) 

In terms of the fields »V and <p the propagator takes the diagonal form 

Z-»A-' = H't? + Ml(V) + A S W ) B 

+F(P + **?(¥>) + *F**)r + 0(*«), (2.42) 
ami, with the appropriate gauge conditions, the aupertrsce reduces to the form of Eq. 
(2.19) where the mass snatricea U now contain terms bilinear in 0. 

For the case of interest u> -» *, the set of scalar fields, and <f> -» A, the back­
ground gaugino field*, and we obtain 

-CtfJT « STr f*(A, Af'(*) + A(*)XA) 

» STr F(A.M'<»)) + toSTriMx^FWi'))) 
+0((AA) 1), (2.43) 

where I have expanded aa in (2.29). The first term on the right in (2.43) is the scalar 
potential of Eq. (2.21): F(A,*f 2 ) s M*/(M*/A*). The second term give* the one-
loop gsugiao self energy. Figs. 8 and 9. To compare this contribution with the one 
arising from the shift in the tree level relation (2.12b), I define 

ic s c + A(l + <*)e~** /J = 0(h). (2.44) 

Then by reasoning identical to that of Eos. (2.34)-(2.37) we have 

tm, a.Scot - d V ' ^ r - (2-«> 

It is straightforward to verify that when the minimization equations (2.27) are imposed 
(and the appropriate coefficients included) Eos. (2.37) and (2.45) give the same result. 
Since V, f,„ depends on e only through the squared mass matrix M1, we obtain 

The right-band aide of (2.46) and the last term in (2.43) are supertraces over the 
same matrix valued function, 3F(\, M*)/9M*, with different weight matrices, namely 
8hl*/dc and A(»). These matrices can be calculated, and one finds that when the 
ground state conditions are imposed: 

tlie two contributions cancel identically, independently of the functional dependence of 
/(JW7A») = *f - J F(A,*f I ) on its argument. 

http://'xUni.il%20Ihiw%20ImH-.%20Ilw%20.iIIkt%20two%20terms%20correspond%20Ui%20diagrams%20with%20two%20externalfcniiKHi%20Bib*.%20'Hie%20mtwhI%20trrin%20has%20a%20ck�ed%20scalar%20or%20fermtoii%20lino%20as%20in%20the%20seconddiagram%20of%20t-lg.%208,%209a%20and%209t
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The results of the preceding Motion were obtained under the d»»tiiiiplimi that 
llie effective uue-luop potential in bounded from below. If the approximate form (2.20) 
i» lued, with i.r as I, tlie potential is indeed bounded" for uu > \ (»<;i'/'l) as a 
ftmction of HcT with c and n fixed, but it ia negative at Ha miiiimum in this direction. 
In view of the result* of Sect. 2.2, thia inipliei that it slopes to -oo in lonie dirertion 
ill Hie (c,A) plane. Moreover, examination*1 of the OfAi'/A') corrections to the ap­
proximation (2.20) ihowa that they destabilize the potential in tlie direction IkT -t 0, 
or i»4 — oo. Explicitly, for M* » A*, the integral (2.U) become* 

l ' ' - f a » ~ Z£i**STrlniMlfK>} ( 2 « ) 

where the notation M], impliea that the aupertrace is over the aubspace of maaaive 
mode*: m' » A'. The atabilily of the potential therefore dependa on whether there 
are more massive boaonic or ferniionic slates : 

««»(»')r-e - Sijn(fl - *%.',» P « ) 

For the theory corresponding to the tree potential (2I),(2.9), one find* [B - F ) _ i M -
- 4 , and the potential ia unstable. However loop correction! calculated for thia theory 
are not valid at field value! for wh.ch U* > Aj, aince huge Af{») in the loop propa-
galora probe* comparably large moment*. At scale* larger than the condensate seal* 
A« the gauge coupling* are weak and there ia no gaugino condensation. We expect" 
the effective theory relevant at acalea between A« and the Cfcmpactifkation Kale AQUT 
to be approximately described by the potential (24) but with k m 0 in Eq. (2.9a). 
The maas spectrum of the correaponding elective sopergravi ly theory, evaluated at the 
ground atate x m Xa of the tree potential with k jt 0, satisfies" 

( B - F ) « , ^ , = 2 W - 2 r ¥ o - 3 « 2 A + l (2.50) 

where AT ia the number of chiral •upermultipleta and No the number of gauge multi-
pleta, ao the potential ia bounded if 

& = N-Na-2>0. (2.51) 

Of course one-loop correction* calculated for the effective theory with k = 0 alao ceaae 
to be valid for AI^(J) > Ajt, r. However the condition (2.50, * satisfied, assure* that 
an apparently (table ground date found uaing an approximation like (2.20) will not be 
simply an artifact of that approximation. 

The result! of the preceding section imply that the potential is unbounded 
in some direction of parameter space unless it ia positive definite everywhere. Since 
V(Af*(i)) = 0 for JW'(«) = 0, this implies in particular that the slope at the origin 
of M" must be positive. The behavior at small Af* is governed by tlie quadratically 
divergent term in (2.20), proportional to STrM2. 

For the supergravity theory defined by the potential (2.8), (2.9) (and by the 
gauge held normalization matrix, Eq. (2.16), /«)(*) = KnS) one find*11 

STrAf* = 2Aty -2 (e , ' - l / ) + 0(v>4) (252) 
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I'.ir a 4- 0,V - y>, = 0 Ami <•> > 0 at the tree ground itate, su S j'r.U' < 0, ami the 
|K>lfiiliil is unbounded in the direction m j = e" -• oo. For A = 0, U = c", so the 
skate at (lie origin of «!,» fur v>, = 0 depends on the sign of A, defined in li<| (2.50). 

If we split the loop integrals into two regions 

<•) W a < A j , A^SO. 2.53u) 

») A j S W ' S A j u , - . A = 0 , (2.536) 

the effective one-loop potential takes the general form: 

V,-i_» - STrV.(Al',A2) + STrH(Af, A^, . , Aj), 

V. « AJ'RCAf'/Aj) 
H - * f f i ( » » * / A j u r . A j / A S w . ) . (2.54) 

where Af* and tiP arc, respectively, the appropriate mass matrices for regions (a) and 
(b) of integration. If tat quadrat if ally divergent term in Vw is positive and dominates 
that ia V(.|, the slope at the origia of m j will be positive and the potential may be 
positive semi definite everywhere.*''* This requires in particular A > 0, or since A as 
defined by Eq.(2 SO) is aa integer 

A > I. (2.55) 

However, with the inrhisioB of one-loop corrections to condensate effects, to be dis­
cussed below, the interpretation of the effective parameter A that actually governs the 
slope at the origin may be modified, and it ia not necessarily an integer. 

The mass matrix relevant to region (b) is of the form 

H ' t e - 0) - ^(JteTrVfw) = AJ(ReT)" V ( « ) + 0(A) = ^ ' (u ) , (2.56) 

where I have used (2.12b), and since Al/Aiur (*« &q- (223)) depends only on w,the 
modified one-loop potential (2 54) is stiH of the form (2.25). Then the reasoning leading 
to the conditions (2.27), and the conclusions of Sect. 2.2 regarding the cosmological 
constant, are still valid. 

Using approximations of the form (2.20) for both terms in (2.54), the potential 
has been studied"-" numerically by varying its parameters. Solutions to the mini­
mization equations were found for plausible values of the uncertainty factors ifc and p., 
smaU value, of A and values of h« in the range 2 ~ cm ~ 5. This corresponds, via Eqs. 
(2.7) and (2.10), to 1/16 ~ aan ~ 1 where I assume that 

•OS < *b < 0.56, (2.57) 

i.e., that the hidden gauge group Out satisfies Sl/(3) C G»u C Bs- The poten­
tial for one such solution is shown in Fig. 10. As the vacuum is degenerate absolute 
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inrt.-.s s4 rtlta .lit luA ilririmim-d, liul tiicir ratios are determined; one limis 

mclmr ~ Oli»"2Am/r/»iF - f'/y/cb^. (2.58) 

where i| ia one of the threshold factors. 

As before, we can expand the potential (2.54), or the corresponding effective 
l-agraiigiiii, about tlie ground state field configuration to study soft supersyiniuctry 
breaking in the observable sector. One find*4* that there are again no "A-terms", i.e., 
terras proportional to the superpotential %V(<p). However, if one simply integrates the 
expression (2.14) over Af < h^1 < S1

ct)T with M1 replaced by A/1 one finds (including 
a threshold uncertainty factor f) soft SUSY breaking terms in the potential that are 
proportional to the factor 

- M - l n O j / A f W ) . (2.59) 
Note that this factor does not grow with the cut-off scales for fixed u. It is as ill-
determined as any of the finite (i.e., cut off independent) terms. The shape of the 
potential I w ^ ' O i i i a fact not very sensitive to its presence; setting a(w) = 0 has 
little influence* oa the characteristics of the solutions to the minimization conditions. 

However, we wish to ascertain the presence or absence of soft SUSY breaking 
independently of the details of the potential; therefore we should assume a priori that 
a(u) jf 0. VV« then find two types of SUSY breaking terms arising from region (b) of 
loop integration. First, far k m 0 and c j* 0 gauge nonsinglet scalar! and gauginos have 
SUSY breaking tree-level masses proportional to the gravitino mass. These masses 
are renormaiized at one loop through the standard diagrams, Figs. 11 and 12, of 
• tenorBialbablc (softly broken) SUSY gauge theory. These terms simply represent 
a renormalization of the parameters that define the theory at scales JJ > Ac above 
gaugino condensation, and cannot change qualitatively the features of the physics at 
scales p < Kt The mass terms generated by the diagrams of Figs. 11 and 12 would 
in fact vanish if we first renormalized (at one loop) the effective theory for #« > Ac and 
then let < JU >/S 0 to determine the effective theory for i»< Ac. 

A second source of soft SUSY breaking terms in the effective one-loop scalar 
potential ia from nautenorraalizable interactions. Expanding the term e" in the tree 
potential far regioa (b); 

Vm„m**ea + V + V (260) 
yields the one loop contributions of Figs. 13a,b to terms that are quadratic (mass 
terms) and cubic (but not proportional to W (y>)) in the gauge nonsinglet scalar fields. 
However, the effective scalar one-loop Lagrangian, including background gaugino field., 
also contains the M-dependent terms generated by the diagrams of Fig. 13c. When 
the diagrams of Figs- 13a,b and l?c are added the v»? and y>f terms in the effective 
one-loop Lagrangiaa, as expanded about the n jt 0 tree vacuum, are proportional* to 
< e * 1 + J»A > . On the other hand, the oonderivative part of the tree Lagrangian 
valid at scales /• > A« is (including only scalar and gaugino fields) 

£(«,*) - £ K S ( x , X ) = ( e " 1 + jAA)' + V 4- V. (2.61) 

The vanishing of the tree level vacuum energy for a nonvaniahing gaugino condensate: 

< e f l / J + I i A > = 0 (262) 
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»IH»JM al*> i»j|ijy llw vanishing, at M-ak-s In-Uiw A< where < \\ ><x h / U. «>f llic mfl 
SUSY breaking ternw generatrd, by the diagram* uf Fig. Ik. 

One might then wonder wlietlier the contribution of region (b) of hup integra­
tion is entirely cancelled by one-loop contributions to gaugino condensation effects, 
in which caae the slope of tlte effective one-loop [KMenlial would be negative at the 
origin of n>£. This is almost certainly not the case. The effective tree potential of &|». 
(2 8) and (2.9) that defines the effective theory for u < \ c can be obtained from tlie 
effective nondcrivative Lagrangian of Eq. (261) by tlie replacement < AA >—. /(z) 
The effective scalar mass matrix, obtained as the second (covariant) scalar derivative 
of the effective lagrangian is not invariant under this replacement: 

~<*A>-0, §;f(')*0. (263) 

One could therefore conjecture that the net effect of region (b) loop contributions, after 
inclusion of loop corrections to condensate effects, ia only to modify the contribution of 
scalar loops. Using this conjecture one finds'" that the effective value of A - t A./y(u) 
that governs the slope of the potential near m$ » 0 ia a (generally noninteger) function 
of u, independent of N and Ala. A positive semi-definite potential can occur for 
u < 1.7 (QOUT > 0.4), and the value of A.//(u) turns out to be naturally of order 
unity, which ia consistent with the results of the numerical analysis described above that 
require a value A ~ I for the existence of • solution to the minimization equations. 
Tlie functional form of A<//(u), and hence the condition u < 1.7, depends on the 
precise functional form the potential, Eq. (2.9a), while the qualitative results of Sect. 
2.2 are independent of this. 

However, the above reasoning ia not really correct since one cannot obtain the 
effective Lagrangian, incorporating the correct symmetry properties, that ia appropri­
ate for the description of physio, scales u < A« by a simple and unique substitution 
AA - . / (r) jn the Lagrangian valid at scales JI > A c. The correct procedure *'** ia to 
first determine the effective superpotcntisl appropriate for scales /i < A c; the effective 
Lagrangian is then determined by the standard prescription3* for W - 1 supergravity. 

Therefore, to correctly incorporate one-loop effects from physics at scales |i > 
Ac, one should first calculate the effective one-loop Lagrangian, including corrections to 
gaugino couplings, relevant at these scales. For the elective theory with h » 0, aH the 
quadratically divergent contributions that have been calculated thus far*'•**-«*8 have 
the property that they are proportional to terms that appear in the tree Lagrangian 
of that theory. This strongly suggests that these terms can be interpreted as field 
and Kahler potential renormalizationa in such a way thai the tree plus quadratically 
divergent one-loop effective Lagrangian can be cast in standard form.3* One could then 
define a corrected effective "tree* Lagrangian valid at scales just below A e following, the 
procedure of Affleck et al. ,M to which, of course, the one -loop corrections of Sect. 2.2 
should be added. On the other hand, logarithmically divergent corrections involve301* 
terms of higher order in space-time and Kahler derivatives and in the Kaliler and space-
time curvatures. Interpreting these corrections in a similarly consistent fashion would 
first require a generalization of the standard Af = 1 supergravity Lagrangian to higher 
derivative terms. 

As mentioned above, the structure of the effective potential relevant to tlie 
determination of the vacuum energy is insensitive to the presence of logarithmically 
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divergent units. Kq. (2.59). In particular, a determination of lire quadratic divergences 
in sufficient tu resolve tlie iaue of the baundcdneaa of the potential. Oil the oilier hand, 
the logarithmic divergences must be understood to fully address the question of soft 
SUSY breaking. Neglecting radiative corrections to condensate elfects (i.e., to JU 
couplings for JI > A c), one finds" contributions from nonrenormalizable interactions to 
gaugino masses that are of order (4x)~*mJ and (4r)" 3A 3m (; A complete evaluation 
of the qiiadralicalty diverged contributions would at least determine whether or not 
terms of the second type are present and set a. bound on one-loop gaugino masses. 

2.4 Possibilities tor a viable phenomenology. 

Let me first summarize the results47,4* of the preceding sections. 

In the model studied above it was found that if the one-loop effective potential 
is not positive semi-definite everywhere it is unbounded from below, resulting in an 
infinite, negative cosmologies! constant and infinite gravilino mass - clearly a physically 
unacceptable solution- If the potential is bounded, the ground state vacuum energy 
vanishes. One possibility is that the grour.d stale ia uniquely determined with m 0 = 0 
and unbroken supenynunetry. This is equally unacceptable since we live in a vacuum 
that is noninvsrianl under SUSY. A numerical analysis"** of the potential shows that 
there are plausible values of the parameters for which an acceptable vacuum, with 
broken SUSY, a. Suite gravkino mass and no cosmological constant, can occur. In this 
case the vacuum has an infinite degeneracy, and the scales m/j,tc and hour remain 
undetermined, although their ratios are fixed. The degeneracy it lifted by fixing, for 
example, the parameter c that appears in the effective potential, Eq. (2.9a). If this 
parameter is interpreted' as proportional to the vev of the 10-d tin ee-form, Eq. (2.4a), 
then aM scales are determined by the topology of the compact manifold. Furthermore, 
the quantization condition (2.4b) suggests that the vacuum encigy is discrete, and 
therefore does not have an associated, massless Goldstone mode. 

Assuming the existence of a vacuum with finite ma, the effective one-loop La-
grangjan can be expanded to detennine whether effective soft SUSY breaking terms 
are generated in the observable sector. No such terms are fount' to be generated by 
one-loop corrections in the elective theory for ft < Ac. However, the potential can 
be bounded and positive semi definite only if we include loop corrections from physics 
at scales A, < u < Acxir, and a complete evaluation of their effects requires further 
study. The heuristic arguments of Sect. 2.3 suggest that no soft SUSY breaking terms 
are generated in the effective one-loop scalar potential. 

If, in addition, no gaugino masses are generated, it is difficult to guess the origin, 
or estimate the magnitude relative to ma, at SUSY breaking effects in the observable 
sector, in particular the ratio mjma that governs the gauge hierarchy discussed in 
Sect. 1.5. It could be that scalar masses arise only in * very high loop order and are 
therefore suppressed by many powers of the effective loop expansion parameter l/16x*. 

Alternatively they might be dominated by effects of higher string and/or Kaluza-
Klein modes and thus suppressed by powers of ma/mp and/or a'm^, where a' is the 
inverse string tension: ct^mjf. In either case the observed gauge hierarchy might be 
realized but certainly cannot be calculated with present technology. 

• AD sko iu l iw inlopceUticM, m umm of the *ev of a scalar field, his recently ix*n propaned.** 



If. utvtr.ul, i|M.iiilmn <IIIII-«II<>IIM from stall's A, *. /i < A«,i»r Krin-i.itr tiuiii.iii 
inhntg gAiigino niA.v>es at mir l«w>p, lliry ate either i>f urdrr 

mt ~ m%li*nfm). (» Ota} 

or of order 
..., ~ A , n i 0 / ( 4 » ) , m ^ ~ l f»in A / (4») '»iJ. (2 614) 

where I have used the result 

ma ~ 03A, ~ 0 I A < » r ~ (10"' - l O 1 ) / ^ . (2.65) 

As explained in Sect. I.S, (2.64a) require* 

ma £ IG-W (2.66a) 

for a viable gauge hierarchy, while (2 64b) require* 

ma i- 10-*m r. (2.66*) 

If the parameter e is proportional to the vev of Wi»«, Eq (2.4a), the quantitation 
condition (2.4b) implies a quantization condition for c of the form* 

where ei»„ ia the antisymmetric Levi Civita tensor and I uae complex coordinate* far 
the compact 6 manifold: t |„» = («(,»).* In writing (2.4b) and (2.67) the metric of the 
compact manifold M has been normalized by defining* 

Si- » e*«i s (0) 

/ M . f < * * c t a , h m - ( £ £ ) ' . (2.68) 
Then one expects 

which intpliea for n jt 0: 
c - H t t y J £ 1000. (2.70) 

Using the range of value* (2 57) for t* give* 

. - & m d ~ tf-<0.4 - 12) x lO"* (2.71) 

which may, from (2.70) be consiitenl with the requirements (2.66) fix a viable gauge 
hierarchy. It is alto interestiug that a value as large aa (2.70) for c might also allow for 
a successful inflationary scenario.** 

The model studied in the preceding section* ia in fact ft toy model when in­
terpreted as emerging from the compacttficatioo of ten-dimenaion*l supergraviiy. Tlie 
topology of the compact manifold ia characterized by Hodge numbers a,, that are posi­
tive integers and determine 0 the spectrum of inasstess states (before SUSY breaking). 



lit |Milnul.ti llir miiulK-f id HMlli-r g<-m-i,iliolts is given liy 6M - rVJ(; ol>si-rv<iliuu Ihm--
f««c ni|uii<-» 6,i > :l In addition lo the scalar Held S, there ate a total of b„ gauge 
iHHisiogk-ti J'„ whereas only one ('J") was iitrlutted in the above model. One should 
th«-r«f«e pin point the <|ualitative features of the model studied that assure desirable 
features at one kw|> and try 1 > identify a clasa of more realistic models that iiuor|»>rate 
llie same featurea. 

As I oill explain inoieexplicitly below, the sulficient ingredients" to ensure van 
ishing gauge nonsiuglet masse* at one loop are a) a partial iiivariance of the clFertive 
tree Lagrangian under a noncompact fte'isenberg group Gn of nonlinear transforma­
tions, b) a "no-scale" structure3* of the tree potential, and c) vanishing vacuum energy 
at tree level. In this context I define "no-scale* by the absence of a term in the poten­
tial proportional to t", which, in tlie absence of nonperturbative effects, would force 
an unbroken supersymmctric solution i n a m 0. In the general class of models that 
I consider the tree-level vacuum configuration has ^ = 0, and its vacuum energy is 
determined by the contribution (2.9a), defined more generally by 

Thus the condition far vanishing vacuum energy at tree level u 

fe.g-a P.™, 
The vanishing of the cotrnologkal constant at one-loop for the model studied above 
follows essentially from dimensional analysis and therefore should be a feature of a much 
more general class of models. Finally, the vanishing of A-terms - and possibly gaugino 
masses - at one-loop, is intimately connected with the vanishing of the cosmologica! 
constant. There is no reason why this result should not generalize to more realistic 
models that incorporate the features a), b), and c) enumerated above, although at 
present we have no understanding of it in terms of symmetries. 

To see how these conditions assure the vanisliing of gauge nonsinglet scalar 
masses at one-loop, recall first (Sect. 1.5) that exact invariance under G« implies 
m , = 0 to all orders. This invariance is broken by both the superpotential W(<p) snd 
the gauge interactions. In a broken SUSY theory, the Istter will induce scalar masses, 
via the diagrams of Fig. 11(b), of order 

mj~£n, f . (2.74) 

In moat superstring-inspired models, mt in the toy model studied above, the 
tree-level gaugino masses are determined by the S-field: 

rn, = e»(S + 5 ) ^ (2.75) 

and vanish when the condition (2.73) for a vanishing cosnwlogical constant at tree-level 
is satisfied. The presence of a superpotential »V(y>) induces tlie contributions shown 
in Fig. (Ila) to the scalar self energy. By aupersymmetry they cancel identically for 
vanishing scalar and cfairal fermion tree-level masses. 
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ln ordt-r tt> gt'iH-'rale itojtv«nii:»hiiig gaiî e iuHî ingti-1 M .iKir III.ISM-:, «MH- lu-t'iU ilu-
inter|il*y of a OH breaking interaction (lt'(y>( / 0) with a SUSY .-making iiilcrsiIHHI 
(e.g., \V[S) j* 0). An analysis'3 of the possible contributions to »ca»u- mas*e* shows 
thai they vanish if Eq. (2.73) i» satisfied. This i* a u«e-l<iu|i arguiue.:* only. The 
conventional wisdom ia that gauginoa acquire masses at one loop and tin-retire that 
scalars will acquire masses, Eq. (2.74), at tlie two-loop level. II, however, one-kn^: 
contributions lo gaugino masse* vanish, aa suggested by the study of contributions 
from scale* J I < hc where tlie theory h unambiguously specified, it is unclear whether 
scalara will acquire masses at higher loop*. A more thorough understanding, in terms 
of symmetries, ia needed to better address this question. 

Since, on the other hand, the vanishing of scalar masses can be understood i-
terms of a partial lleisenberg symmetry GH, we can ask whether any potentially real­
istic model* nouses* this partial symmetry. It has been shown4 1 that f?M is a remnant 
of a partial symmetry, which is exact for vanishing gauge couplings, of ten-dimensional 
supergravity. Under this symmetry the gauge fields AM and the antisymmetric field 
fl«« (of which the three-form HLMH, Eq. (2.4), is the covariant derivative) transform 
according to: 

AM -* A"u + "!#• 

Bu»-Bun + -j*AfaU%i, (2.76) 

where IIu is a harmonic form. In Calabi-Yau rnrnpartuVatinn,** where ihs 51/(3) 
subgroup of one £* i* identified with the holonomy group of the compact manifold, the 
limit of vanishing gauge coupling constant is singular, and the appropriate invariance 
under GH may not survive41 in the effective 4-d theory. However, it is expected to 
survive for orbifold compactirkation-

Quite generally, consider an effective 4-d Kihler potential of the form 

0 - G(T,t,C,C) + GmlS,S) + In \W{C) + W{S# (2.77) 

where W(S) j 0 induces tree-level SUSY breaking, and 

GlT.t.C.C) = - £ 0 * ln«* - 5 * l>«»detf/». (2.78o) 
. i . i » . i 

Tlie functions VA are of the form 

UA'TA + TA- Y.&'CiA (2.78*) 
t 

and the £» x i » matrices V* are of the form 

U5 = Ti + Tf- ECj'fif". (2.78c) 

In Eqa. (2.77), (2.78) the fields S,TA and some of the Ca are gauge singlets. The 
superpotential defined in this way yield* an effective tree-level potential of the form: 

V»e a Cf i fe | J + e*n + t>+v > . (2.79) 

where 
n = E<?-« + E PBLB-3 (2.80) 

A 8 
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.iiid P are V are. fcapecliwly. the usual D- and F- terms that are .111.11 tie in llic 
gauge nonsiiiglct fields. The criteria enumerated above, that assure vanishing one-
loop scalar masses, are satisfied for Qs = 11 = 0. Specific examples, based on orbiCold 
compactification, of theories satisfying these criteria have been given by Ferrara el al, 4 1 

with field content and Kabler potential specified by the following table: 

n* n . 9 P L 
0 1 - 1 3 
3 0 1.1.1. - -
2 0 1.2 _ _ 1 _J t 1 2 

The wistrnrr of these elective theories suggest that a superstring theory in 
ten dimensions might yield an effective field theory in four dimensions with a realistic 
particle spectrum and the possibility of generating the hierarchy of scales needed to 
understand the observed scale of dectroweak symmetry breaking. 
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