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b Etfective Nom lizable Theories in Plysicy
1L Infrased fimits of the standard model.

Olmesved pasticle interactions can sometimes be described by effective nonrenor-
twaalizable theories that, in the context of the standard model for strong and electroweak
interactions, corsespond Lo a particular boug distance, of fow energy, limit of the un-
deslying senosmalizable theory. For example, the Fermi theory of §-decay corectly
doxcribeos weak charged current interactions in the limit of small nonientum transfer
Qu, compared wilh the inass mw of the charged intermediate bovons W2 that mediate
these interactions:

Il << wd, = V2¢*/8Gr, (1.1)
where Gr in the Farmi coupling constant. Another example is the SU(2), x SU(2)n
chiral invariant o-model that describes pion dynamics st encrgies that are small com-
pared with the inverse confincment sadius of QCD. However, in this case, we cannot
simply reproduce the effective low energy theory as a particular limit of » pasameter
{e.g.. mw ~= co for the electroweak theory) of the QCD Lagrangian; numerical meth-
ods used in attempts o establish such a tion will be described in the lectures of
Peteonzio ®.

Finally, quantum gravily and ils supersymmetric extension, supesgravity, are

Jizable: theosics that ase often conjectured to be the low energy/long dis-

wance it of & finite {rather than renormalizable) theory which should become mani-

fout ab energy scalew large compared to the Planck scale or some othier mass parameter

charactesiziog the underlying physics. The L leading candidate for vuch a theory

is & supentring thenry? in Lea dimensions, in which case the relevant parameter could

be the compactification scale or the string tension, both of which are expected to be
within » few orders of magn™ o the Planck mase.

Effective fous di ional field theories suggested by superstring theories gen-
=y have a high degree of vacuum degeneracy at tree levcl which is related to symme-
tries of the effective Lagrangian under nonli [ tions g scalar ficlds,

similar to the chiral invariance of the nonli d-mo‘k”orlowexmypmm An im-
partant question then is to what degree the degeneracy is lifted by loop corrections to
the clicctive teee Lagrangian. In this lecture | will discuss one-loop corrections Lo ef-
foctive noarenormalizable theoties, with special attention to loop expansion techni

that presesve all the invariances of the effective tree Lageangian. Such sytmnetrics p!ay
an impactand role in the superstring-inspired field theories that 1 will discuss in my
sccond lexture. Here 1 illustrate the relevant techniques with examiples drawsn froin
the standard mode] whese it is possible to compare results using the effective low en-
ergy/long dist lizable theory with exact calculations in the underlying
renosmalizable theocy.

Recall it two impostant propertics of ultraviolet divergent contributions at
cich order in the loop expansion for renonmalizable theories: a) They wre at most
fogasithmic - with the important exceplion of quadratically divergent contributions to
scalar masees that | will discuss later in relation to the gauge hicrarchy problem. b)
They can be reabsorbed into redefinitions of the parameters of the tree Lagrangian -
coupling constant, fermion masses, etc.

2

Now consider the Fermi theory of low energy charged current weak interactions.
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‘The etfec e sitessctaom toe Lagrangian s of the baon:
Litee = TACH LY VLI LINL)- (12

The ane-loop contribution, Fig. la, to the effeclive four-fermion coupling is gquastrat-
ically divergent. Cutting off the loop momentum integration at {p| = A gives the

mc,

PeL A
>Q< W
.4
n .&"ﬁ ’
Figure 1: Divergent one-loop comtri- Figure 2: Fiaite one loop contribu-
butions to 4-poirk (s) and 8-point (k) tioss 20 4-poist (a) and §-poiat (k)
functions in the Fermi theory. tions in the
able gauge theory.

estimate (recall: there is a factor (4w)~? for cach loop inlegration):
57 ~ e NRVIC el ~ e G, (13

1n the context of the standard model, we know that the Fermi theory is celevant only
for momenta [p|? << my; if we identily the cut-off A with the scale at which the Fermi
theory ceases to be valid, A? ~ mj,, we oblain, using (1.1):

La~g ﬁ'(h’vh)’ = ;;Cu-. (1.9)

where o & ¢2/4w is the weak “fine siructure® constant. The raault (1.4) can be
compased with the low energy limit for external momenta of the diagram of Fig. 2a,
which i» finitz and yields the same estimate:

&~ e ,(75) L(mm%—-(c...)r... s)

in the context of the Fermi theory, the quadsatically divergent one loop correc-
tion (1.3) can be absorbed into a sedefinition of the Fermé coupling constant. However,
thete are also logarithmically divergent contsibutiona to the one-loop effective action
that g te new couplings. Fae ple, the ibution of Fig. 1b can be estimated
as

La~ TB—,-(:J' Gr) (A%} (br1ve)’ (16}
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where g is a fermion mass iy or an external momentum |}, Diensional cousider
ations amd an analysis of the infrared behavior of the corresponding finite diagram of
Fig. 2b gives the atimate

L~ ‘ﬁ;;(ﬁl"‘*" In{niy fi® Wi avn)', (1)

which, using (1.3}, is the same as (1.6) for A7 = m},. Note that while the underlying
physics dictates that A = O{mw), we cannot in general seb A = my as an exact
equality. Ratiwr, we should set A = gy with n = O(1). The precise value of g
depends on the defails of the way in which new physice - in this instance the finite
range r ~ myy, of the wesk interaction - enters to damp the apparent divergences of
the effective low gy theory. M , the value of 5 can differ from one diagram
to anotber. Thus, calculations using the cffective nonrenormalizable theory shoutd
teproduce the correct andes of magnitude of the quadratically divergent terins as well
a8 the precise cocflicient of the bogarilhmic divergence. In the lalter case a rescaling of
A by & factar of order unily can be reabsorbed into residual finite terma that cannot
be reliably cvalusted ia the context of the effective theory,

The above analysis i appropriate for the Fermi theory of charged current cou-
plings with one generation of quarks. When u «+ 3 charged current couplings ase
included in the eflective tree Lagrangian (1.2), one would grosly overestimate one
loop strangeness-changing neutral current transitions with the identification A ~ my.
This is becanse there ja & muck lower threshold, A ~ m, (c=charni) where these tran-
sitions are damped by the GIM mechanism®. C ison of calculations of this type
with dats provided aa estimate® of the chatmed quuk mase before the underlying
theosy® was knows. In other worde, an analysie of the divesgent Joop contributions to
a known effective thoosy can point to thresholds where that theory must be replaced
by & more convesgent one,

In the following 1 will focus on a nonrenocmalizable theory that is more closely
related to those suggested by supesstrings, ely a gauged nonli o-model, but one
which can also be obtsin=d analytically in & particular limit of a parameter (my — oo)
of the standacd, renormakizable dlectroweak theory. This will provide another labora-
tory for testing the nitity of calculationa using the effective theory. We will find (sa
for certain supesstriog d models to be di d later) fealures similar to those
for the Fermi theory: qn&ahc divergences can be reinterpreted as renormalizations,
while new terme are generated at the leved of logasithmic divergences. | will also in-
troduce, in the context of more familiar physics, notions such as scalas metric, scalar
curvature and nonlinear symmetsics, that play an important role in formal sspects of
string theosics discussed by other lecturers.

1.2 The lacge Higgs mase fimit of the standard electroweak model,

Neglecting gauge couplings, the scalar sector of the standard model” has the
(renormalizable) Lagrangian

= .ptro— Ml - 577 08

which is invariant under the group SO{4) or SU(2) x SU(2) of linear transformations
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amang the fousr ccal sedar ficlds that parassetrize the complex doublet o:

on (%)= m(50D)

1n terms of the component ficlds (5,0) Eq. (1.8) takes the standard form of the lincas
o mudel:

Cu= 30000+ 0.7 07N 47 - . (1.10)
A useful nonlinear formulation is obtained by making the field redefinition
p= 71‘"' e (o)' (1.11)
I terma of the ficld vasiables (8, p) the Lagrangian
Cu=Cra(®.) - P - ) (112)
diuplayn explicitly the decoupling at zero fous tum of the dcss Goldatone

modes 8,, since these fields sppear in (1.12) only through derivative couplings (Lx.g.).
The thieocics (1.10) and (1.12) are equivalent and give identical S-matrices as calculated
by expanding about the vacuim defined by < || > V@ =< p >=<a >=v, p=
o + Oflgl — v/ V2P, 8 = x, + O{lp] — v/ 2P.

Instead of (1.8), the Lagrangian refevant for weak interaction physics is that of
a gauged scalas sector, with the seplacement

Sp— Dypm (B, +iA)p, A= %T.A: (1.13)
where the four 2 x 2 ices T, ¢ the g of SU(2)y x U(1) on the
scalar doublehp,mdA'uelmgeﬁeld. The(lupd Lagrangian is invariant under
the transformation

¢ =Ux)p, A, =UAU+iBUU:

L{A,p) = L(A' ) 2 L(A¥), {1.14)

where in writing the last line of (1.14) we have relabelled the gauge field A’ = A. In
other words we treat the transformed gauge fields as the gauge degreca of freedom.
With the particutar choice

Vet o= % (“) (L15)
we obtain the Lagrangian of the “unitary gauge”

Ly =L(A,p), (1.16)
and we identify the physical Higgs scalar as H = p ~ v. Loop calculations are most
casily done in a renormalizable gauge in which ¢ is repsesented linearly, Eq. (1.9) and
the unphysical scalar degrees of freedom »; appear in the Lagrangian:

La=CL(Aox), H=a~v. (117}
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in ethier case tie physical Higgs mass 15 extracted from the potential in (1.10) or {1.12)
@

miy = 270 (L18)

‘The physical pasticles of the theory are the less plioton v, the
vector basons IWE and Z and the liggs panticle H. The vector boson masses are
extracted by expanding the covasiant derivative {1.13) around the vacuum jp} = ve/2;
in tenns of the kncar Rckd vasiables (1.9):

D, wpv:!:“—’(ww'* 2,27) + mwW 0 + - (1.19)
d 4 " 24:0;’0 W ’
The vacuum expectation value (vev) w is fixed by the experimenta) determination of
the Fermi constant G aad the identification
4m C3
o= —,—’& =(V2G§)™ = (-‘-T¢V)’. (1.20)

Although the x; are not physical degrees of freedom of the theory, the relevance of the
a-model (1.10) or (1.12) to physica is thicugh a theotcm $-% which states that S-matrix
elements including longitudinally polasized W's Z'a{Wy, ZL) can be calculated, up
to cocrections of ordes mu /Ew and mz/Ez, by rephan‘ W# and Z,, reapectively, by
xt and x* as external pasticles and using the Fey rulelo!a-r--- lizable gauge,
i.e., using the Lagrangian (1.17). Thie resull is intuitively plausible if one recalls that
the physical, or uaitacy, gauge of Equ. (1.15) and (1.16) was obtained by a transfos-
mation ¥, — W] 22 W, + O.x that introduces a longitudinal componenl O.x into the
vector ficld. Alernatively, in an uaphysical gauge, the last term in (1.19) introduces
a mmn‘ of W, with the laagitudinal vectos 9,x. In practice, calculations are usually
dioa Jzable R gauge® in which the gauge fixing term is arranged to
pnx:-dyundlh W - tmxln‘u:muu (1.19). The Lagrangian is no longer man-
ifestly gauge jant, but is iant under nonki BRS transformations'® that
are related to gauge transformations. The Ward identities of BRS invariance can be
used’® (o desive the vector-scalar equivalence theorem stated above.

Now consides the kmit my — co. Since v ia fixed by experiment, Eq. (1.20),
it follows from (1.18) that A —s 0o, i.e., that acalar self-interactions become strong.''®
I the potential cnesgy-density in {(1.10) or (1.12) is to remain finite in this limit, jp?
must be fixed ak its ground state valuc.

P=422 = (1.21)

The variable p or o, and therefore the physical acalar H, is climinated from the effective
theosy as an independent scalar degree of freedom:

o= (- =), (1.22)

Note that the constraint {1.21) is invariant under SO(4) or SU(2) x SU(2). When the
condition (1.22) is imposed, the knear transformations

%, = &0, + Pio,

b0 = —Px,, (1.23)
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whete o, and 0 = 12,08 a0 the paramsctens of, n-qwﬂn-‘y.a vevtin ™ amdan aval”
SU1{2}, ase replaced by the ficar transh

83, = e an,my + i(n? — 0P (129)

The Lagrangian (1.10) takes the form

Ly~ %a,-'a'n'g., (1.25)
where "
g =6+ ———-’.—, (1.26)

is the scalar metric. One can check that (1.25) is explicitly invariant under (1.24).

The Lagrangian (1.25) defincs an effective noncenccmalizable theory, that, ac-
cording to the equivalence theorem stated sbove, deacribes '3713 the strong eclf-
couplings of longitudinally polarized W’s and Z’s in the c.m. encrgy region mw <<
3 << m}; in the large my limit of the standard model. Although the theory is strongly
coupled, invariance under chitn. SU(2), Eq. (1.24) ssoures'® that the low energy limit
of S-matrix elements for x — » (and hence Wy, Z,) scattering are given precieely by
the Boen, o tree, approximation to the Lagrangian (1.23):

S = Speu(l + Ofs/18s70Y)). (1.27)

This ie becanse (1.25) ia the only form invariant under (1.24) that ia at most quadeatic
in momenta (i.e., in derivatives).

1.3. The one-loop ecalar sction.

In thie section | will cutline a loop-expansion procedure for the effective action
that explicitly preserves the invariances of the troe sction. § stast by recalling elements
of functional integration, background field methods and the derivative expansion.

Consider first a free scalar field theory, with Lagrangian

L= -(D PG - mie), i=1,...,N. (1.28)
The effective quantumn action is
Sa=iln [ d¥pe (1.29)
where the troe action as & functional of y is given by
Stel= [ st = -3 [ £25 (10 = . 0.)
The inverse propagator
a™z) = (02 + mblz - ) e
can be considered as an infinite di ional matrix including the space time pasition

T as & matrix index. Then the integration (1.29) can readily be performed using the
gaussian integral

/dﬂxe-lxcﬂ-.zx. = det ~V2M (1.32)
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whith gives for (1.29)

Sg =tlndet YA (L.33)
For a (tcnormakizable) interacting ficld theory, with Lagrangian
1, .
L= 53.\9 > - Vip) (1.34)
the effective action is, in practice, evaluated as an expansion in perturbation theory.

In the background ficld method one expands the functional S|y} around a classical
background fiekd conhguration . Seuin; =ty

Stel = Stoul + 5= ww[ P (1.35)

The first texm in (1.35) is the cffoctive tree action expressed in terms of . The
second tesrm vaninhes by victue of the classical equations of molion in the presence of a
background Gcld yg. More precisely, one adde a source term J, (o)’ (o the Lagrangian
(1.34) which that the squations of motion are satisfied for v = g, The third
term in (1.35) determines the one-loop cocrection Lo the effective action. Insesting
(1.35) into (1.29) gives**

S = Stod + itn [ pexpl—3 [ dei(6)2) 4

= Shou 4 ilndet "’A+--'=S(M+%iTrlnA+~u (1.35)
ilere A is the propsgator ia the presence of the background field wy; defining the
(background field dependent) "mass matrix”

U!)(‘) = Uc)W‘) = W@

eriz=s}

8;)z.y) = (3] + Us(=)Yi(= — y) = (8 + Ui;(s)) / (;:,';.
x / i—%?);c"’"(-p’ + Uij(—id/8p))e'r. (1.37)

By thus expressing the inverse propagator in terms of its Fourier transform, the x-
intcgrations implicit ia (1.36) become trivial, and as the p-dependence reduces to
products of §-functions one cblaine®

Trina™ =/a](;').

The remaining p-integration can be performed after a Wick rotation and a suitably
defined expansion of the logarithm in (1.38) with

U(x — iBf8p) = U(z) ~iBU(x)3/8p. + - . (1.39)

which gives the one-loop effective action a8 a scries in increasing orders of derivatives'®.

Trla(-p" + U(z — i8/0p))- (3-38)
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In the case of a scalar theory with derivative couplings, the above fosmalism
must be generalized to provide an expansion that, at each loop onder, is manifeatly

invariamt under field redefiniti Cousider a g § a-model with the Lagrangian
€= Ju IO - Vi) (1.40)
Under a chiange of ficld vasiables:
¢ = 2%, 8.2°= %a.v' (.45
the scalar metric ia redefined according to
$ule) — hu(2) = 35200 042

The inlegration measure ¢V in the expeession (1.29) for the effoctive action must
now be replaced"” by the iz-usiant aieasure d¥p det/? g(), and & covasiant expansion
is obtained'®~*® by replac::i;) the functional derivatives §/ép* in (1.35) by covariant
funclional derivatives b.:

Slvd = Stod + D.S|_¢* + D.D,S|_#'% + . (143)
As previously, the second term on the right in (1.43) vanishes by the equations of motion
{with appropriate covariant source tess), and the thicd Lerm determines the one-loop

contribution which is governed by the inverse acalar propagator' for the theory (1.40)
in the presence of a background fickd configuration ye:

aem =008l = | -rw 3| ae-n o

where T is the scalar connection determined in the usual way from the scalar metric ¢.
Explicit evaluation of (1.44) gives™

A7\ (5,9) = ~g(pe)ld + U + R}é(= - ), (1.45)

with

u-’ = ".. DDV (y), R.' = "“...0.‘?‘5"9"- (1.46)
where D; is the covariant scalar derivative, analogous to the covariant functional deriva-
tive in (1.44), R} i the acalar curvalure tensor, and

()] = B8] + TLo* = [0, + nlv)E (1.47)

is a scalar ficld redefinition covariant four-derivative. Inserting the above results into
the quantum action (1.29) and using (1.32) we cbtain

S4" = —3Tring 8™ = ~3Trlald +U + R
- i e —
=-3Ja:f ey Tr 1o Alp. = 10/0p) (148)

with )
Alp,z - i8/8p) = (ip. — %) + U + R, (149)
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whese, fur an asbatrary gmatoxe-vahiwd) fumtion F(e) = F(pole)), | deii.
sponding bartad function by

« the corre

F(r) = F(zx —18]dp) = e~ ¥ p(5)e*® 1%

=F(z)-—iB,F80p, 4 ---. (1.50)

The derivative expansion {1.50) is not terin-by-term covariant under scalas fiedd redef.
initiona. An explicitly covariant expansion is obtained® by noting that if we define

B=UAU™, U= 420020 (1.51)
then

'y - d'p '
fo=f Tl A [es] @l e (1.52)
where d,, is defined in (1.47). The equality (1.52) holds because 8/8p acting on the far
right of the integrands makes no contsibution, nor, by integration by parts, does 3/3p
actiog o the fac Icft. Undes the transfocmation (1.51) the functions £, Eq. (1.50),
become:

F=UFU™ = ¢ F(z)¢*™ = F(z) ~ i{d, F}0/0p + ---, (1.53)

which gives an expansion that is term-by-tern covariant. Furtherinore, we have®:;
U(ip, - 3. = i(p, + G.,.8/0p.) (1.54)

where the covariant opesator G,.(@,8/8p) ia defined in terms of the scalar curvature
and ils covasiant derivativen

e = ll..‘-lf = 8up' B R (p),
G.= % - (d,, G.10/Bp, + (1.53)

Amembling these results, we may write the one-loop effective action, Eq. (1.48),
in the manifeatly invariant form

: o - L.
sir=gfasf ﬁrr Wf~(p, + Go8/0p.) + U + R

= A x constant — 2o [ &'<Te {AYU() + R(z))

—ganfwe + mz))’+ 36w G] + fiite term, (156)
where | bave perk d the tum integration to di ,' explicitly the divergent
contributions. The leading quastic diverg ix Seld i dent and therelore irrel-

evant as lomg as we are not interested in ‘nvlunanl.l lnuru:honu (i-e., in the value
of the logical tant). Foc supesgravity “'lhnlmllcomldermSect
2 this term is exactly anceled g bosonic and fermi loop contributions. For
the case of a constant background ficld, 3,9 = 0, we have R = G = 0, and the

pression (1.56) red to the familiar Coleman-Weinberg rewult? for the one-loop

effective potential:

1
52" lp a0 = *n.‘l_z / ETr(NAP(p) + ZM* In(M/A) + constant),  (1.57)



with the idventilication M2() = U{y2) for the fichd- dopensheat mass imatrix. Wil s
comstait background ficlds these is, in particular, an additional quadratically divergent
tenin propottional to the scalar Rticci tensor:

'rR = - R,0,¢'%¢ (1.58)
which represents a one-loop correction o the scalar metric tensor g,
1.4 The (gauged) noulincas o-model.

We can immediately spply the sesults of the preceding Scction to the nonfinear
o-model defined by Eqe. (1.25) and (1.26). There is no potential 30 U = 0, and the
scalar curvature ia seadily evaluated to give™®

) ). ;
Ru= ;‘5(‘:'!# - 639a), (1.59)
and the Ricci tensor
1-N
r,=42M,, (160
where N ia the number of real scalars x;, is ia this case propoctional to the metri

tensor. This is because the expression (1.25) with metsic tensor (1.26) is the only
two-derivative form that is invasiant under the SU(2) x SU(2) tranaformations (1.23).
Combining the one-loop result (1.56) with the tree Lagrangian (1.25) we obtain for the
one-loop cosrected effective Lagrangian

U oan of, (N=1)A?
La= ig‘-,&'t ) =’ (l -6 ;;)

+ 6—:;;7"' (R’ + %G.-G") k(A1) +---. (1.61)

Theﬁr-tlermm(lGI)canbevmvednurmm&lmlmdthepmﬁddnmdm
(N-1)A?

tn=2x, va=2Zv, 2 =1- T (1.62)
The d, Jogasithmically di term inval cumlhnuenotprnmtn
tree level. The asgument of the lo(-nlluu is rily dimensionk

the masmless 0-model, these is no scale parameter Lo scale the dimensionful cut-ul'-
hence the question mask in (1.61). In this theory, successive terma in the detivalive
expansion are increasingly infrared divergent®, aithough S-matcix elements are well
defined. Thustoget a ibl we must the expansion. The correct four-
paint scattering amplitudes can be obtained simply by dimensional analysis™: since B2
and G? are at least quartic in scalar fields, lheonly dimensionful quumtynppunn;
in the formal expression (1.56) that can appear ia the arg of the logarithm is the
derivative operator. Thus the last term in (1.61) ﬂlould be replaced by

e [Aa g +are ot e ] voom, ey

where a and a’ are constants of order unity that cannot be reliably determined, as
discussed in Sect. 1.}
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Specrahzing bo the cne N o= 7 which is apprepriaie for the large my fimit of
the standarsd susbel{and fos pion physics), we oltain, for example, for the x¥x~ elastic
scattering amplitude at one loop™ (here 1 set a = o' = 0):

Mixts™ — x*x") = —iufv?
! 3 3 3 2 2 2
*rm’v'"’ la(A?/ = 3) + 3 In(A®/ — 1) + 20 n(A®] — u)

—%t’h(l\"/ ) %s’h(l\’/ — )+ %u’[ln(A’/ —s)+In(AY -0},  (1.64)
» result which has been obtained previously?, using different techniques, in the context
of pion physics. In Eq.(1.64) 5,2 and u are the usual Masndelstam vasisbles: 2 > 0,u,¢ <
0. The texm propostional 1o In(A2/ — 3) 3 {A?/3) + is contains the absorptive past
due to on-shell seacallersing.

In the lasge my kit of the electrowesk theory, Eq. (1.64) can be interpreted as
the one-loop corrected amplitude for the clastic scattering of longitudinally polarized
W+W-. The tree amplitude®” is given by the ficst tcrm in (1.64), which contributes to

___*-/ Figure 3: Vector boson fusion pro-

cass for diboson groduction vis strong

‘M w, , z . Wi, Wy rescattesing in fermion colli-

sioas.

¥ R d T | T
4 :u’--«-u 3 e

# ¥
W gl ey Gat)
Figura 4: W2W[ and Z;Z; pels production rates?? in pp collisions at /3 = 20

and 40 TeV with a rapidity cut fgf < 1.5 and a cut-off A = 3 TeV. ‘The amplitudes
have been unitarized as described in the text.

Figure §: Dibosoa production via fermion-

AN
+ antifermion annihilation through renor-
I lizable gauge coupli




3 and pwave scattening anly  The one kg conrection comtamns all partial wavea (as
well as & comparable amplitude?? kor clastic Z] scaticpng, which vanishes st tice
level) wnd thercfore represcnts a more realistic scattering model that incorporates the
correct symmetry and analyticity propertica, although it is not fully unitary. For VIV
center of mase scattering encrgies /3w < § TeV, unitasity cotrections are experted
10 be impostant only ko the lowest (s) pastial wave. lucluding a correction? ke this,
enpected yickls fos pp — (202, ar WEW) + anything, via the (usion proceas of
Fig. 3, are shown in Fig. 4 fur a rapidity cut fy} < 1.5 and pp c.m. energies of 20
and 40 TeV, where they can be pased with predictions’ using (unitarized) tice
ammplitudes.

The one loop corrections shown in Fig. 4 are surprisingly lu.-, and one may
quation the usefulness of the cne-luop approximation. The are
effectively .-my/(hu)' and (A/4xv)?, s0 Lha scrien converges for aww.A’ < (4nvp ~
(3TeV)?. Thua if A £ 3TeV, the results of Fig. 4 should be rekisble in the encrgy
range mly << sww << A?, and will cease to be meaningiul above the scale /i of
“new physics” which could take the form of & Higgs scalar (or broad rawonance in the
1 = J = 0 channel if my X TeV) or & ticher rescasice spectrum. In the region sww <
A2, the experimental signature’® for strong W Z, interactions is an enh of
WW,ZZadWZ pmducunn over what is expocted from the scaling contribution from
q¢ annihilation, Fig. §. For my — oo, the tres contribution of Fig. 3 was found to
excead g§ annihilation for /aww X (1/2 — 1)TeV; the one loop corrections yield an
cven larger strong intessction contritustion ia the subrescasnce continuum regicn.

Il we interpret the rwsulta of Fig. 4 and Eqe. (1.81)-(1.64) aa applying to
the large sy limit of the standard meded, tha undeclying theoey ie renormalizable.
We can compars these results with tioss oblained by calculating in the fnits my,
renormalizable theory, and thea taking Lhe large my bmit. For this puspase, we stast
with the linear o-moded of Eq. (1.10), ia which cass we have

R.Gﬂv‘on uu-sg;::;#o. u“)

where | identily (pu,1,° - .¥n) & (0, ), -, 8n). The expansion (1.56) now gives

=1 ] .
Cictag = 3—2—'.;(1\'7‘1-0 - i'I‘rU’In A? 4 Baite termas), (1.66)
which, in pasticulasr containe so divergent desivative terma.
Now consider the kimit A —+ c0. It is ienl Lo introduce Lhe variables p
and 8,;
N !
@ = pecafu), .= phsintofe), 0= (3507) . w.en
im
The potential is independent of the Gold des §;; exciting these modes with

terv fuur-momentum costs 0o encrgy, even in the limit A — oo, However, for 5 3 v
the potential cnergy is infinite. As discussed in Sect. 1.2, p remaina fixed at its ground
utate value: p* = 0 + 57 = V2. In other words, to evaluate the clfective action (1.29)
we inay introduce source tecms for the 8, but nut foe p. niposing the clamical equation

of motion for g
_ &5 dobS Ox' &S
0= TP = (8’6" + 8 6_'.-),‘ (1.68)
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we can climinaie the hackgiound fick) o = o(#,,d.n,) in tenns of the lickls =, amd
their desivatives. ‘The integral in (1.56) (or (1.37)) is most casily pecformed by first
disgonalizing the “mase matrix” U(x,dx). There is one cigenvalue

m)® = M3~ %) — o0 (1.69)

that grows with A and decouples (up to a field-independent contribution) for m3 >> A3,
and N ecigenvalues

'm:.' = Mp? - u’)mﬁnit: (1.70)
that remain nite in the imit. Siace we are working with a renormafizable thoory
we can iterprel A as the renormalization scale. The cffective theory obtained for a
pasticulas chaica of A is then a good approximation for energy scales in the neighbor-
hood of A, and oaly hight cigeamades, |*m®| < A, contribute to the loop integrals for
the effoctive theory. We expect the effective nonranormalizable o-model to be valid at
scales niuck smalicr Lhas the Higge mase my = “m, (5, 0x)", i.c., for

m3" << A? << “mi®, (L)

Indesd, wher [).66) (or more preciscly (1 37)) is evaluated by taking the limit m, — oo
befoce tha limit A — oo, the previous resuk, Eq. (1.61), is exactly reproduced @35,

The large my limit of the standard eloctroweak theory is, in fact, a gauged
nonlineas o-model. The generalization of the sbove ramits Lo include background
gauge Kclde A, is casily realized by teplacing ordinary space-time derivatives by gange-
covariant derivalives:

8, —-D,=8,+iA,
d =8 41, <+d, =D, +7,. (1.72)
Then the expression (1.35) for G, s modified to include & teom proportional to the
gauge Reld otrength
G =W, df=iFu+- (1.73)
and the logarithmically divesgent contribution in (1.56) proportional to G? includes a
term
GG~ = &F, (1.74)
that contributes to the one loop S-function™.

To fully delesmiae the onc-loop sction, bowever, we must also include internal

vector bosom loops. ‘This is complicated by the fact that when the tree action is

expanded, as in (1.38) or {1.43), up to terme bilinear in the quantumn ficlds (or functional
ilegration variables) there are in gencral vectos-scalar mixing terms:

$3 [eaD.of' 5 [F5in3e' B, 6

> ] SopAE +he = — [ dp0 (A ) + b, (1.75)

Ta evaluate the cffective potential®® with gg=constant, A, = 0 one usually wocks in the
Landau gauge, 8,3’ =0, 30 that the last term in (1.75) vanishew identically and there
i 10 vectoc-scalar coupling. When nonconstamt scalar and vector background fields are
presed the situalion is more complicated and one must find the gauge condition mout
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appropriate foe the spoecific calenfation. The case selevant to the large oy stasdard
madel, namely the globally SU(2) x SU{2) symnwisic nonfinear o-nunbel emblided
i an SU(2)p x SU(1) gauge group, turns oui (o be particularly complicated, but has
been solved®®. The divergent contsibutions to the effective scalas and gauge luson
aclion have been delesminad, giving an exprmion of the form™

o = lﬁ',w,.p;’ 6 ,la.-,,r + WDe?

+el9'D,up)? + -+ -} + finiite terms, (1.76)

‘The first three termsin Eq. (1.76) can be interpreted as renormalization of fickds and for
parametess of the troc Lagrangian. In fact pasts of these logarithmically divergent
contributions remain divesgent for finite my. In pasticulas, the coefficient a detesmines
the f-function for scales intermiediate between miyw and my.

The dots in the coeficient of In A? represent Lerma at least quastic in the gauge
and scalar fickds. According to the equivalence th of Sect. 12 we can calculate
S-matrix ek ts by interpreting A, as a field operator for ¢ Jy polasi
vector bosons and the x; in the expression {1.9) for @ s field operatoss for longitudinal
bosons. An examination of the exact expression 27 for these Lerms shows that there
in & factor of the weak gauge coupling constart ¢ for each external transverse bason,
and that the vertex functions with no external A, are preciscly those obtained in the
ungauged model.

In other words, the only divergent correction from gauge loops to the effective
scalar action of Eq. (1.61) comes from the fourth term in Eq.{1.76), which has been
identificd?” as the only two-derivative term that is SU(2)., x U(1) gauge invariant but
breaks global SU(2) x SU(2). It aleo contains a correction to the parameter

p=ml/m}col’ . {L77)
In the unitasy gauge:
( 2 Y o
#'D9) oo = m pn , 72", {1.18)

which contribules a shift in the Z-mass but not the 3-mam Using the explicit value
found™ for cin Eq. {1.75), one gets for the correction Lo the g-parameter {1.77):
_ ~3g%  »
p-1= = et tan’#.In ( L
which is well within experimental limite: |p — 1} < 0.004 if we take A < 3TV a0
discussed above. Conversely, experimental limits on |p — I| assure® that this term
cannot contribute significantly to the Wy, Z;, scattering amplitudes.

If we now set A? = m}; in Eq. (1.79) the resull is precisely that found™ by
taking the large my limit of the one-loop corrected p-parameter as calculated in the
senosmalizable (finite my) standard mode). Similasly, the logarithmically divergent
four point funrtions (i.e., dots) in Eq. (1.76) agree™ with previous cesults® found
for those contributions that grow with lnmy as calculated diagrammatically in the
standard model.

We have thus established that one-loop effects calculated in the effective non-
renormalizable theory defined by the my — oo limit of the standard model agree

) + finite (1.79)
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with the Luge iy hmit of one boop calculations evaiuated using the renormalizable
theory. ‘This result kauds a degree of ceedibility to the boop expansion of the effective
nonresusalizable theory.

On the other hand, the sesults shown in Fig. 4 are of much inore general
validity than the standasd inodel. If the scalar sectos possesses a chiral SU(2) x SU(2)
symmictry, as mentioned in Sect. 1.2, the leading behavior of low energy S-matrix
elements are necessarily those deteninined by the effective tree Lagrangian of Eqs.
{1.25) and (1.26). There is only one possible gauge invasiant, chiral synunetry breaking
corsection (Eq. (1.78)) to thie low energy behavior and it is constrained to be small
by cbeervation: p == 1. The effective tree Lagrangian (1.75) is therefore universal? up
to corrections of asder |p — 1}, and g0, therefore, is the divergent past of the effective
one-loop Lagrangian.

If in Eq. (1.26) we replace v by £,, the decay conatant for & — &5, then Eq.
(1.25) is the effective Lagrangian for pion physics, valid at energies s, < m2 j.e., the
resonance repo- io pica scaltering. In this case the underlying renormalizable theory
ie (spproxiaoately) nassieas QCD, with Lagrangian

‘ocn=_2.5n'0¢a+ﬂ',.,0‘." (1.80)

whese Nr is the number of quark Savors, G2, is a glion ficld atrength tensor and the
covasiant desivative is D, = 8,4 iy, x- A /2, with 3¢ » 3% 3 matrix operating on color
indices. The Lagrangian (1.80) ie iavariant under global flavor SU{NF), x SU{Nf)r
transformations on quarks:

Yin— gy g (1.81)
where AF is an Nr x N matsix acting on flavor indices. Empmcnlly, the ﬁnt gener-
ation of quarke is very light, m,,my = 0, so chisal sy try is & good ap tion

foc Ng = 2. Expesimental data telle us further llut the vacuum is not chnul SU(2)
invariant. We attribute this checrvation to spontaneous symmetsy breaking; the vac
uum energy is lowest for < g ># 0. The quark condensate < Yy > is not chiral
invariant; its presence breaks chiral SU(2), x SU{2)a to ordinasy flavor SU(2), i.e., the
lub‘lmp of transformations (1.81) with ap = ap. Spontancous breskdown lmphea the

of lcss Goldetone b , which are d to be the (almost) massless
piona. Chirsl SU(2) dictates that their fow encrgy S-malrix elements be determined
by the chiral jovasiant Lagrangian (1.25), (1.26). Loop corrections®® then generate
the one-loop effective contsibution of Eqe. (1.61)-(1.64), where the cffective expansion
parameters are now s, f(47f.)? and (m, f4x f.)%.

Technicolos is & tandard scenario for the spontaneous breaking of the elec-
troweak gauge symumetry based on the extrapolation of the observed nonperturbative
phenomena in QCD from the scale Agcp ~ 100MeV whe:e color couplings become
stroog, to the scale v ~ 250GeV of electroweak sy try breaking. One a
new gauged technicolor interaction g techniquasks ¥ and techni-gauge bosons
Ar that is asymptotically free and ltron; at & scale Ayc ~ 250 GeV, From the
obesesvation that

< o >~ Adcp ~ I3 ~ (100 MV (1.82)

one infers tinl.
< $rdr >~ A ~ 0® ~ (250 GeV)’. (1.83)
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‘The less Coulddst L are technipi xr, the of piong. Tl veui-
quarks aze assumed Lo carry SU{2) x U{1) quantuas sumbers such that the condensate
(1.83) also breaks the elec k gauge sy y. Then the technipions couple to
the weak gauge bosons via the effective gauge invariamt coupling (1.19), 30 that the
¥ and Z acquire massce arl “cat” the technipions which b their bngitudinally
polasized P ts. The equivalence th of Sect. 1.2 holds Ly construction,
and chiral Ravor fisvasi of the technicolor Lagrangian implics that (1.25),(1.26) is
the effective technipion troe Lagrangian. Thus the results of this section apply specifi-
cally to techuicolor models, and the yields of Fig. 4 are correct at encrgics below the
technitho tesonance mass wherse, of course, crass soctions will rise dramatically.

™ '| of £ < 1, 42 in a -n‘ ‘l 4 3.2

gauge theory has also Loen invokod as & passible mechaniem for breaki
metry, DY oy will be discussed in my second lecture and the lectuses of John ENie

1.5 Supergravity and the gauge hierarchy peoblem.

Thepu‘ehmuchypmuemmbenmplynuudbymuutmmn—-
have quadratically divesgest loop in
theories. In general, if the lhouypmd«nnluynduﬁd&v,thmlmp
cotrections wil include mass tenme:

A
Lyotoep? 'W"' (1.84)

Technically, the term (1.84) can be reabsorbad into & nalization, but the appear-
ance of scalar masses much smaller than the natural scales of the theory, such as ihe
grand unification scale maur oc the Planck ocale mp, becomes very artificial. More-
aver if the ultimato theory - including gravity - uadedlying obeerved physics ia & Raite
eather ihen a renormalizable one, all mass p must be calculable in tesms of
the fundamental length scale (e.g., mp ~*) of the thaosy.

In a theory with unbroken supecaymunetsy (SUSY) & = 0 identically ia Eq.
(1.84) because Lhese ie an exact cancellation belwaen bose and fermi loop costributions
to the scalar mass. Since SUSY is necessarily broken, the cancellation cannot be
coinplete, but in the context of broken SUSY one asticipates an effective cut-off A ~
msusy, i.e., Lhe scale that governs boson-fermion mam splittings.

'l‘hemhr-dofdlbeoundndmodd Bq(l!).nvul(lycoupldnllh
cnuplm‘cnnumluuml Miax £ 1, implying for the physical Higgs mass, Eq.
(1.18), my < 1 TeV. There is in fact mexpumm&dﬂldawelhuthﬂilpm
is not strongly coupled. On the ather hand one must ullimately explain the known scale
of clectrowecak symmetry breaking, w22 1/4 TeV. It is unlikely that this scale is orders
of magnitude less than the scale parametes of Lhe effective low energy scalar Lagrangian,
even in the strongly coupled kmit. In other worde, experimental obsesvation roquires
an effective cut-olf less than or the order of a TeV.

In addition to SUSY, acalar masses (as in technicolor modele) can be protected
by spont ly broken global sy tri llnpulheGoldﬂnnebmolmexu&
synunetey of the Lagrangian that i is spontanecusly broken, it is il
aml again a = 0 in Eq. (1.84). l.l'llneunaumlluploa! buakm‘dlheglubal
synunetry, @ can acquire a currespondingly small mass. Consider for example, the
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QUD Lagrangian, £4y.(1.30), but with quark tmases included:

= Lycplng = 0) - m v ~ mgdd- ... (1.85)

The nonvanishing masa tesme 1, 4 # 0 explicitly break SU(2), x SU(2)x. An cwpir-
ically good formala for Lthe pion mass is:

2= ~I-€m =aA. (1.86)
Iere the pion mass is governed by two cffects: the acale A = m, where the effective
pion theory (1.25) breaks dowa and Lhe ratio @ = m, 4f f. of explicit to spontanesus
symmetty breaking (These is no factor (45)2 in (1.86) because mug # 0 is a tree
level effect.)

Now consides Lhe minimal coupling of N real scalar fields to gravity, with the
action

So= [ o=ttt - TER) (1L87)

Here g ia the space-time metric {/§ 3 det’/* g) and R is the space-time curvature. Loop
corvactions 1o the action {1.87) will gencrate divergent contributions Lo the scalas self-
ecacgy, Fig. €a. In the supersymmetsized gravity theory, or unbroken supergravity,
the contributions of Fig. 6a will be exactly lled by the gravitino {G}) exchange
disgrams of Fig. 6b.

[
I S W o . O O
~-- fo

»
X, s

Figurs 3: Costribations o ecalar () salf energy from (a) graviton (G) and (b)
pravitino (&) koge. In F‘q.ﬁx. is the fermionic superpartoer of ;.

@'}.& - TQ?—F e

Figure T: Two-loop coatsibutions to Figure #: Gravitino-loop contribu-
scalar masses through combined gange tions to the gaugino mass; 4 is s gauge
and gravitational imteractions, which bosoa.
may be approximated as a cse loop

ibation with iohiag (at one

loop) gaugieo (§) mam.
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Wien SUSY is beoken the gravitine acquises a mass, mg # 0, and the cancellation is
no longer complete, Then one expects a (quadsatically divergent) contsibtion to the
scalar mass tesms:

i m(. A?
CRT P 8
where A is the appropriatc ant-ofl. If A ~ mp, clectroweak phenontenslogy requires
mg < 10 TeV.

m (1.8)

Howevee the action (1.87), as well as its supersy tric extension, is i jant™
under global SO(N) transfosmations amig the ,. Thus to all orders the efective
quantums action will depend on the scalas fickds only through SO(N) invariant quanti-
tizs: o = Tiwl, L, 0.0'8°¢, ctc. If thie vacuum encrgy of the theory is lowest for
a value < Jp|? ># 0, SO{N) will break spontancously to SO(N — 1), producing N — 1
Guldstone bosons. Thus, only one of the ¢'s will acquire a mess of the osdes of (1.88)
while the N — 1 others will H fess Lo sl ocd

In the real workd, scalass have isteractions other than gravilational oncs. In
particylar there aze gauge inleractic.na that explicitly break the SO(N) sysnmctry of the
action (1.87), s0 one can expecl @ priori a {mild) suppresaion faclor & ~ a, wliere a is
the gauge interaction fine struclure conziamt. Supposc, however, that SUSY is broken,
s0 mg # 0, by the vev of a gauge singlet scalar. In the abacnce of gauge couplings
SO{N) is an exact symmetry of ihe Lagrangian, so the diagrame of Fig. & cannot
generate scalar masses. On the other hand, if SUSY breakiog is not communicated
at tree level to the gauge scctor, i «., if the gaugino masses (m)), a = 0, gauge loop
diagrams (sce Fig. 11b below) vanish by supetsymmetry. Al the two-loop level, gauge
interactions that know about SO(N) Lreaking, and gravitational interactions, that
know about SUSY breaking, can combine, as in Fig. 7, to yield nonvanishing gauge
nousitiglet scalar masses thal one might estimate™ as:

Ai

3
m I, &= (Tla); w5 T (189)
requiring mgS10® GeV if A ~ mp. One can estimate the two-loop contsibution of
Fig. 7 as a two-step process. First calculate the one-loop contsibution, Fig. 8, to the
gaugino ass (the blob in Fig. 7), and then wse renocmalization group equations to
obtain the low encsgy value of Ulie scalasr massss, which should be of order

ml~ Zom} (1.90)

‘The two diagrams of Fig. 8 scparately give contributions of the form:
my = (—‘—;-75 il + fir ),‘(malmp) [pta(a/m) + (191)
For a # 0, using (1.90), we would get the estimate (1.89). H . the divergent

contributions frein the two diagrams of Fig. 8, have been found™ to cancel identically.
‘Fhen if ¢ # 0, using (1.91), we cbtain instead of (1.89)

m: ~ a—:—)‘mz[m,‘,, (192)

requiring only mg <10~ *inp ~ 10" GeV. Thus a large hi hy for clect k sym-
wnelry breaking could arise from a rather mild hicrarchy for SUSY breaking relative
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tor the Plask scabe la faot, suloavgicat caleatations™7 showed that the two contri-
butions of Fig. 8 (o the gaugine mass cancel completely. In my second lecture 1 will
disenss otlwr sources of gaugino masses at one koop.

The above discussion is still unrealistic in that Yukawa couplings, which also
break the O(N) lymmelly of the action (1.87) have still nat been included - they
are indeed necessasy i Ih: Randard modd for g ing quark and lepton inasses,
M L fos & i itational coupling, i.e., for a nontrivial scalar metric,
I X ™ lhe gravita “2mal acnon s sot SO(N) lymmdnc It aiay however, as for the
o-model of Eqe. [1.25) and (1.25) posscss a nonkinear syminetsy that could play the
saine role. This is the case for a class of superstring inspired models, Lo be studied in
Sect. 2, that possess a somlincar soncompact global symmetry of the kinetic energy
terin.

A compact symmetsy, soch a8 SO(N), leaves invasiant the form E. 7 under
lineas tranaformaticns, and, ia particular, the canonical kinetic energy

Cxgp == 28, (1.93)
. io SO(N) invariant. A soncanpact symmelry, such a3 SO{m, N — m) leaves invariant

the form T p? — £, , »? uader kocar transformations. The ponding invariant
kinetic energy torm

- N
Lxg = % (g(o_.,.»)’ -y ;)') (1.94)
mel

is physically unacceptable ao it containe “ghosts™. Only nonlinear realizations of non-
compact syminetries acaang scalar ficlde can lead to physically acceptable theories, For
example the Lagrangian
Cag = 2OTE ~ 0T PNPLe))
(1 - o)
where the ; = (#)! sre N 4 1 complex scalass, i invasiant under nonlinear SU(N +
1,1) tranaformations. This caa be seen mast easily by writing (1.95) in the form

i=0,-.-,N (1.95)

Cxs =8p.0°9G}, G; &pwﬂlw.w). (1.96)

which, as discussed by Elis,® is the most general® form for the kinetic energy in
N 41 supergravity theories. The real function G, §) is the Kaller potential. For the
Lagrangian (1.95) & i gives by:

€ = —la(1 — B9). (1.97)
which is obvicuely invasiant uades compact, linear SU(N + 1) x U(1) transformations.
The remaining 2N + 2 traneformations of SU(N + 1,1) are characterized by N +1
complex parameters o; of the coset space SU(N +1,1)/SU(N + 1) x U(1). Under the
noa lkincas Leanslormations )

8pi = a; — p, &'y, (198)
the Kihler potential is not invariant

8 =ap + fa. (1.99)
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However, since its vasietion is a sum of functions of p and of o, the Kalilker metsic ¢!
and the hence Kinelic encigy \erms are invasiant.

in N + 1 supergravity theorics, as discussed by Effis™ the scalas potential (ne-
glecting gauge-inducod D-ternw) s derived fiom the Kililer potential™

Viv) = L6656 ~ ),

G = % = (6. (1.20)

For the Kihler potential (1.97), V() is invariant under kinear SU(N + 1) tranefor-
mations, since @ is, but it is not iavariant under she nonkinear iransfrmations (1.99).
The Yukawa couplings, which are similarly derivad™® from the Kihler potential ase
ais0 nat invariant.

However the forma of the kinetic energy term (1.95) does not wniquely deterznine
the Kihler potentis.. To cbisia an alternsliva Kibler potential we maks the changs
of ficld variables.

114
T G= -{;..-n. -N. (.t01)

Then (1.97) becomes
G=-WT+T-CC)+ f(y) + ) (1.102)

The first term in (1. lm)nppurunlln Kll\ltl potantial for “no-scale® supargravity
modehs™ as well as some aug ng-inepired models. ¥ I instead of (1.97) we taks
the Kihler potential

G=-WT+T-CC) (3.103)

we ollaia the same kinelic enecy, {1.96) which is SU(N + |, 1) invariaal. The Kikler
putential (1.103) is invariact, nol uader SU(N + 1,1), but uader'®*® & aoncompact
lcisenberg group Gy of aoulincar global formal;

Ci—C ta

T-o'l‘+éc+;6a+iv (1.108)

with N camplex parsmcters a; and ane real'p ter v O & pact axial U(1)
symmetry: § fn T = constant. A supergravily theory delined by the Kihler potential
(1.103) ia, for vanishing gauge cu: Hling constant, fully iavariant uader Gy which can
be shown®? (o iniply mg = 0 to axi ocdens.

Neither (1.57) noe (1.103) defines a Lheory with realistic Yukawa conpliags far
the kow energy theoty. The class of upezztring-inepired models that | will study is the
following leciure have a Kihler polentia? of the form:®

G=-3a(T+T- ) +la W(C}+ W)+ -, (1.108)

where the dots refor Lo funclions of fickde othes than 7' and C;, and the super potential
W(C) genaiaton the ohscrved Yukawa couplings of the gauge noosingiet seciac C.
Hoth W(C) and the geuge ccuplings break invariance under (1.104). Neves:heloss,

as discussed in Secl. 2 below, Gy invariance ol the function {1.103) i sufficiert*? 1o
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protect wealar sasses me at one Joop in the class of nodes defined by (1.105) that
have a vanishing cosnwlogical constant at tree level.

2. Supertring Inspiced Supergravity Models.
2.1 An effcctive tree potential.

In most of tisie Jecture 1 will study a protolype model obtained by a simple
compactification of 10-dimensional supesgravity, with nonpertutbative SUSY breaking
eflects incorporated.® At the end | will discus the g Jization of the results to
a class of mose realistic models. Ellie™ hos outlined the steps used in constsucting
the prototype model. lere | shall vecall the relevant physical aspects and present the
resulting potential.

Compactification from tea to four ' ‘mensions generally entails a number of
scalar fic'de asvociated with the geometsy of the compact manifold. In particular there
io the dila'oa ficld yy related to scale tzansformations in 10-d supergeavity, and the
beesthing m.ode @ associated with Suctustions in the size of the compact manifold.
‘The particul-r combinations

ReS = o3l'e™, ReT =3l'c" + ;w. @)

whate the N cramplex ficlds o, are gaugs nonsinglets, are the scalar members of two
chiral supsrmultiplets. la addition Lhexe are other gauge inglet acalars iated
witia the detailed topalogy of the compact manifold that [ will comment on later,

The passible relevance of these fickds Lo phenomenology is that a) they couple
only with gravitational streagth to checrved matter and thus provide the possibility
of commusicating weak SUSY breakiog to the obeerved sector through quantum cor-
rections, and b) they are amociatled with (classically) flat ditections in the space of
scalas ficld values. Specifically, if SUSY is unbroken, the effective tree potential in four
dimensions is of the form

V = f(ReS,ReTYW (g, (22)
with < V(g.) >= 0, 50 the vevs of ReS =nd ReT remain undetermined at the clas:cal
leved.

In order Lo make contact with obeesved physics, the vacuum degeneracy must be
kfted and SUSY must be broken by noop bative quantum effects. Two sources of
pestusbative SUSY breaking have been proposed™! in the context of the Fy x By
heterotic string.** With Calbai- Yau compactification,® for ple, tive gauge group in
four dimensions is Ey x Eq, where Eq is the gauge group of the obeerved sector and £,
that of a bidden sector, coupled anly gravitstionally to observed matier. Both groupe
can be beoken down Fusther™ at the compactification scale Agur by loops of gauge
flux trapped arouad topological singulasitics i the compact manifold. The surviving
subgroup of E; munt costain the obscrved SU(3): x SU(2)y x U(}) of the standard
model for strong and & k intesactions. The hidden gauge theory is assumed to
be a pure supersymmctsic Yang-Mills theory which is asymptotically free and thesefore
becoines strong at some scale-A,. This means that, as in QCD, Sect. 1.4, the gauginos
of this strongly couded sector may form a condensate:

<3 >xh#0 (23)
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which Wweahs supessymunicy™ (as well as a chival synumuetey).  In Gen disiensional
supergravity there is also a fickd steengih Hpagnll M, N = 0,---,9) that is an anti-
symmetric, rank-thiree Loremtz tensor. ‘This fickd may acquire a nonwvanishing vacuun
expectation value (/,m,n=5-..,9):

<& ifimn > c# 0 (244)
that satisfies a quantization condition:
L dE"™" < Himg >= 2un (2.49)

when integrated over a chsed 3-surface S of the six-di sohal pact manifold.
The vev (2.4) aleo breaks supcrsymmetry. Either (2.3) o {2.4) alone would induce a
positive cosmological conslant. Combined Lhey can contribute to the vacuum energy

demity in the form of a perfect aquare™

< Via >x< (H + [lpe)\)? > 29)

which aleo involves the dilaton field pa. When one integrates over the compact 6
manifold to oblain the cffective 4-d action the size of the compact manifold

Agur ~mp < & >=mp < (ReS ReT) ' > 26)
aleo appears, and the resulting potential depends on the scalar elds S and T ia such a
way that, for fixed values of the paramciers c and A, the degeneracy in S is kited. This

is because it is the S-field that couples in four dimensions to the gauge basome and
gauginos. As a consequence ite vev determines Lhe unified gauge coupling conetant:

< ReS >= {dxacyy)~". 2.0
Specifically, the full effective tree potential in this model takes the form: %02
Viu=U+V 4D 29)
with
U=(S+5) T+ T~ Ep) P IW(p) + ¢ + M1 +w)e™ e/, (29)
S+ 9T+ T - ) g, @)
D= );(alrw' e T+ T - He') S+ 5), (292)

where the matrices T sepresent the generalors of the observed gauge group om Lhe
chiral fickde. In writing (2.9a) [ have introduced the notation
3ReS 3ImS
we e A=l (2.10)
whete & governs the g-function of the strongly coupled hidden gauge sector. The
superpotential W(yp) = (W(3))! is cubic in the gauge nonsinglet fiekds. VandD ase,
reapectivaly the F-term and D-term that appear in globally supersy tric th
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by in the flat spave linit mp — oo, i supersymmelry is unbroken. Eqs. (2.9) are
expresscd in units of the coduced Planck sase:

V2 mp = (8xCn)""? 22 % 1671°GeV. 2.11)
where Gy is Newion's conslant.

Each Lerm in (2.8) is separately positive semi-definite. ¥ and D are minimized
for i, = @ and therclore vanish at the ground state. If the SUSY breaking parameters
c and h are abeent, W () = 0 forces U/ = 0 and the vevs of S and T are undetermined.
When the mpersymmeisy breaking vevs of Eqe. (2.3) and (2.4) are turned on the
vacuum cnergy vasishes for

B =y = 4wn, n ¢« 2, {2.12a)
w 2wyt cm —h(l +ug)e /2, {2.12)
(The choice of sign i Eq. (2.12) & CP.invasiant #- L e, FF does ot

coniribute 10 the quantum action.) The vev of T semaine undetermined at Lree jevel,
as does the value of the gravitiao mase ™
wmi =< e? >m< (S + 8 T+T) Yt he P>, (2.13)

At tree level thare i tharefore a four-fold vacuum degeneracy; in sddition to < ReT >
and < Im T >, theve is 2 two-fold degencracy in the parameter space defined by ¢, A
and uy. We shall now sex 1o what extent this degeneracy is lifted at the one-loop level,

2.2 The Effective Theory st One Loop.

The cfiective one-loop potential ie obtained by a covari p of the
quantum action wilk constant scalar background fields 2, as in Eq. (1.43), but where
mmﬁwmkw. The reault is the Coleman-Weinberg potential:®

Vogy = View + 502 ),Str / PP+ M),
P+ M(z) = 27 (2)A7 (0, 2). (2.14)

A“'(p’.z)-lbemm-thpmwedthcbmkyound acalar fields £ and Z(a)
i & foid dependent mormalization matrix. For scalar loops Zi(z) = gis(z), the scalar
metsic, and Mj(z) i determined from the second covariant derivative of the potential,
a8 discuseed ia Sec. 1.3. In a graeral supergravity model™ the fermion and gauge boson
kinctic energy tesms are of soncsmonical form. For example the fermion part of the
Lagrangian is of the form

Cr =FIZ5(r- 0+ ME(IIW +0(01) + O (G¥) =¥ (AF)v +... (215)
and the vector past is of the form
v = el Pt 4 35 (M) M).. At
= -A'(A )44 + total deriv. +-- (2.16)
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The consespunnling snass amatyies appeasting i (2. 1) aze, sesprectively
M) = (z;."‘(:).u{(:p:/.;"‘(:i).,'
(@), = (1 () ) 2.17)

| work in the Landau gauge, A, = 0, so that, as discussed in Sect. 14, the gauge
basons decouple from the scalar fields. Similasly, imnposing the gauge condition 4*¢s, =
0 on ihe gravitino field v, asaures that it decouples from fermions. The relevant part
of the gravitino Lagrangian revuces simply to

-
Lo=-30(1-8+mala) b+ (2.18)
With these gauge conditions the supertrace F of a function of Af? is defined by*

STr F(M?) = 3Tr F(M}) + Tr F(AM}) - 2Tr F(M})
~ 4F(m}) + 2F(4n}), (2.19)

where thie last term is the Fadeev-Popov “ghostine™ contribution. The integral in Eq.
(2.14) is divergent and must be regulated by a cul-off or subtraction parameler A.
Neglecting terms of order Af2/A? we obtain:

= 2 [ar 3t ALl R3] aA?

Vors(a) = View + 395 [qA STr M 4 35Te M*In(M/pA )] . (220)
where A is the appropriate cut-off and i and p are prescription dependent paramelers
of order unity that reflect uncertaintics in threshold factors and finite contributions as
discussed in Sect. 1.1.

One can extract some of the qualitative features at ane loop, that are indepen-
dent of the precise shape of the effective potential, simply from dimenasional analysis.*”
‘The only dimensionful quantities in (2.20) are the mass matrix M and the cut-<f A.
Since the potential has dimension four the one-loop contribution is necessasily of the
forin

Victeep = STr M*J(M?/A?). (@)
We wish to evaluate (2.21) in the neighborhood of the tree ground state, so we sct
v. =0 and 3 = fy. Then the elements of the squared mass matrix M? are all linear
hoinogenous functions of the SUSY breaking parameters ¢ and A:

My = 0) = (ReT) a(w)ch + d(w)A?)

= M(ReT)v(w) + O{R), (222)

where in writing the last tesm in Eq. (2.22) | have used the tree level condition (2.12b)

and A is the loop expansion parameter. The eflective tree theory with potential (2.8),

(2.9) is valid at scales below the scale of gaugino condensation, i.e., the scale where

the hidden gauge interactions become strong, which is determined by renormalization
group equations to be, using (2.6),

A = e = (P Ay
= (e P) (2.23)
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i Planck smass uimts, Delining the variables
# = W (ReT)?
X = pe* (2.24)

we have M? = pu(w), MP/A? = yv'(w), so identilying A? = A2 in the supertrace (2.21)
it takes the form

Vietop = 1 {x,0). (225)
Near its ground siale g, = 0 the Lrce polential ia proportional to a perfect square:
Vieas i = 0) = (ReT)jglec, A )l (2.26)

with g = 0 when (2.12b) is imposed. Shifts of order A from one-loop eflects contsibule
at O{A?) to the tree leved vacuum enesgy. Thesefore Lo determine the one-loop vacuum
configuration we aecd only retsin the contribution (2.25). Since this is already O(A),
one loop corrections to the ground state condition (2.12b) will also contribute at O(A?).

At tree level Lhere i & thee-fold degereracy in the ¢ ter space defined by
(ReT), (), A and c. Thus, subject to the eon&hon (2 l2b), we must minimize the

contribution (2.25) with respect to three independent variables in this space, that |
take to be g, x snd w. The extsema of the one-loop corrected potential thecefore occur
fer

o o _
Bx =5 0 (2.27a)
and
M =00c =0, (2.21)
Either of the conditions {2.27b) sssures that the encrgy-density ishes at all ext

of the potential. This implics that i the potentia! is not positive semi-definite every-
where ik is unbounded from below. If the function f(x,w) is positive semi-definite,
there is always a global miniawsn ab i = 0, for which supersy try is unbroken and
all particles resmain massless. If this ia the only solution it means that one-loop correc-
tions force the potentially SUSY breaking nonperturbative effects to vanish. As higher
ocder pertushation corrections cannot break SUSY, this is not a physically acceptable
solution.

If e immpose the conditions (2.27a) with 4? # 0, f(x,w) = 0 the function f is
overdetermined and a fine tuning of parameters other than the dynamical variables x
and w is required for such s solution to exist. The theory contains no free parameters
(such as coupling constants) other than the dynamical variables. This means that
whether or mot a nostrivial (u? # 0) solution exists depends on the detailed way in
which the physics of the, presumably finite, underlym; theory enters to dunp l.he
divergent istegral (2.14). In ical * for solutions to the minimi
equations (2.27) we vasied the uncertainty factors ) and o using an approximation
of the form (2.20). We considesed a solution as acceptable if it occurs for plausible
values of these parameters. If any such solution exists, and if the potential is bounded,
it has vanishing vacuum eocsgy and is infinilely degenerate, because the lunction [ is
independent of the p ter j that Getermines the scales of the theory. In other words,
4 one-loop corrections permit & vacuumn with a finite, ishing SUSY breaking
gravitino mass the tree level degeneracy ia lifted in all but one direction (aside from
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the axion, ImT, dircction) in the space of dynamical variables. ‘Fhus thic ratio ma /A,
is fixed, for example, but not the value of ma. However the quantization condition
(2.4b) implics that this degencracy is discrete, and that all scakes arc fixed by the
topology of the compact manifold.

l emphasize that, unhke the scalar fiecld degreos of freedom, A and ¢ are only
—not propagating ficlds—of the effective fow encrgy llv.ofy valid at scalos
|n.low A, Thercis a doubly infinite set of eficctive thootics corrcap g to possibl
chuices for these parameters. Since they are, h dy ical variables of the
unsderlying thioory they should selax or tunne to those v-lnel that minimize the overall,
fully quantum corsected vacuum energy. If there is any solution Lo (2.27) with finite
my there is oue for any value of i, Eq. (2.24) and henice for any value of ¢ oc A + O(M).
Once ¢ ch one of its allowed valucs, all other vevs (except (Im1Y)) are fixed.

1 now assume that there exista a solution with finite gravitino masa. Soft wiper-
synunetry breaking in the observable sector can be probed by expanding the one-loop
eifective theory around the ground state ficld conﬁ‘urd)nn xe. The y; depcmicnu of
the effective potential can be obtained by writing the ficld d: fent mase matrix as

AP(2) = AP(xe) + A m M 4 A, (2.28)

Tlie supertrace of an arbitrary (unction F(A?)) can then be expanded as
STr F(M3) = STr F(M}) + STr(AF'(M3)) + O(6). (2.29)
Smce A = O{y]), the sccond term in (2.29) containa the quadratic and cubic p-

pendent terms that appear as soft SUSY beeaking cflecta in the fow encrgy, cffective
lunornulluble theory.

In the most general -upcr;uvaly dels superay tey breaking, mp # 0, at
tree level ind both g scalas 3.4 tione Lo 1 my, and “A-
termw® which are terms of order ma that arc binear in the -upetpou:nlu! W(yp). No
such Lerms appear at tree bevel in the effective troe potential (2.8), (2.9) but they could
appear at the one-loop level with cocflicients suppressed by the loop factor (4x)-2. An
explicit evaluation of the mass matrix (2.28) gives, however, for the potential (2.21)
when expanded as in (2.29), the following result. ™™ |f V., is the one-Joop corrected
potential (2.14) and we define:

V(e, ReT\w) = Voyylp, = 0), (2.30)
then the p-dependence of V, is given by:

Vass(2) = V(c + W(p), ReT — -;'H‘,u) +0{p*) {2.31)

which is preciscly the form of the p-dependence of Vi, alone. In writing (2.30) | have
not used the tree level condition (2.12b). I we now expand (2.31) up to terms cubic
in the ; we obtain
20Veys

AReT

HWip) + Wie et '"

k
Vogs = Vagsle = 0) — Zlvl
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+0(4"). (2.32)
‘Tl ground state conditions OV/D ReT = OV/[dc = 0 assure e vanishing of both the
nass tenn and the *A-terns®. Nole that there is a quartic tenm in the expansion

i .0"/,,! mb,z . .
Vigy 3 8 ) DlleT’ lﬂ,. bel (2.33)
that could kead to noa-negligible SUSY breaking effects if mp, . is large. Ilowever it
can be shown that this term disappears from the cffective ow encrgy theory for o;
when the heavy fickl ReT is cossectly integrated out.92:4%

The vanishing of the scalar massa®®*! can be traced*? to tha invariance of the
form (1.103) under the Heisenberg group Gy introduced in Sect. 1.5, as 1 will indicate
more explicitly in Scct. 2.4. The vanishing of the A-terms® is ks transparent; it oceurs
only wlicn one miniizes the potential with respect (o the parameters c and h, as well
as scalar vevs, and is therek lated to the vanishing of the ¢ logical constant.
Lazge noavanishing A-terma with vanishing scalar masses would be a phenomenological
disaster, since all gauge nonsinglet scalars could acquire vevs, breaking, in particular,
color and cleclsic chasge consesvation.

Another possible el soft supersy ry breaking is gaugino masscs.
Since gauginos form ac g Lo the adjoint ation of the gauge group,
which is real, theic masecs, as ke lcnlau do not In'eak the gauge symmetry. There
are iwo sources for gaugion that ase g ted by radiutive corrections. The

first is from one-loop gaugino sclf-energy du‘um-, M3T Figs. 8 and 9. As mentioned
previously the disgrams of Fig. 8 cancel exactly, »s do those of Fig. 9a.

A R N =8 .:"?
‘_1:“‘_‘ 3 * +
[] ) LR i i i
Xy

Figurse 9: Osvloop contsibutions (o the gaugino mass from (b) the scalar ficld §
and (a) its chiral superpartaer xs.

The quadratically divergent contsibutions to Fig. 9b also cancel and the resuli gives a
contribution™37 of ocdes my ~ m In(A?/m}).

In 2ddition there ia a “trec-level® gaugino mass induced 57 by the shift at one
loop in the tree level relation (2.12b). In the model™ considered here, the tree-level
gaugino mass is given by

(115)icee =< e"/‘—(s +8) >=< U >=0(h) (2.34)

where G is the Kibler potential and U is defined in Eq. (2.9a) o (2.26). If, for example,
wy = wy + & is the vev of w as determined at one-loap, with wy given by (2.12), we
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ket a confrdiition 10 the gongino arss
1 a
by = UM ) = 07 en) 7w (2:5)
‘The shift éw is detesrmined by

av a W
2y

Wiiting U in the form, (2.26), we have

2
%‘;’ loms, = 2ReT)™ (g—i(w)) b + O(F%),

mp o b & -ﬂ'{# - (231

Wiien adding these two contributions care must taken to treat all divergent integrale
in a consistent fashion. This can be done by evalusting the effective one-loop action
in the presence of constant background gaugino as well as acalar ficlde. The term
bilinear in gaugino fields, evaluated at the scalar ground state configuration, can then
be identified with the gaugino mass term. The reault found®® in this way is that
the two contributions Lo the gaugino masees cancel identically when one imposcs the
minimization conditiona (2.27).

To show how such a cancellation can occur 1 will briefly outline the calculs-
tion. In the presence of both boson () and fermion (¥) background ficlde the inverrz
propagator can be wiitten in the form™

A5 = D.D; Sicucl,, = (Z(P + 8}k, (2.38)

where &,j refer to all quantum field degrees of freedom, Z(yp) is the normalization
matrix introduced in Eq. (2.14) and

P = B(8 + Mj(¢))B + Fliv- 8 + Mr(p))F, (2:39)

§ = BégsF + FbraB + BlnaB + FéerF + O(¥°). (2.39%)

In Eqs. (2.39) B and F are projection operators on, respectively, the boson and fermion
subspaces in the space of quantum fields (i.e., the functional integration vasiables 4, ).
Eq. (2.39) determines the propagator for ¥ = 0. The y-dependent past is expanded
in Eq. (2.39b) where 8pr and 85 axe lineas in ¥ and §pp and 85 ase quadratic in .
The effective one-loop Lagrangian is given by

et )

- %STrIn(P'& 5)

- %(STr In P+Str P - %STr PPts 1 oWN} 240)

The first term in brackets gives the effective one-loop bose Lagrangian, in pasticulas
the eflective potential. It represents a sum of one-loop diagrams with any number of
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external o fickds. The atlicr two tenms correspond to dingrams with (wo external
fermion fimws. The sevorl term has a chesed scalar or fermion line as in the second
diagram of Fig. 8, 9a and 9b, while the third term has cte buson and vne fermion
internal line as in the first diagram of these figures. [t is however easier Lo evaluate
these terms by making a cliange of integration variables:

¥ — ¥ =¥ +(i7-8+ Mr(y)) " bor. (241)
In tesms of the ficlds ¥ and 3 the propagator takes the diagonal form
: Z'07" = B(8" + Mj(v) + Apd¥)B

+F(8 + Mi(p) + Arp¥)F + O(¥Y), (242)

and, with the approgriate gauge conditions, the supertrace reduces Lo the lorm of Eq.
(2-19) where the mass matrices M now contain terms bilinear in .

For the casc of interest ¢ — x, the set of scalar ficlds, and ¥ — ), the Lack-
ground gaugino ficlde, and we oblain

~Lif™ = STr F(A, M(z) + A(z))))

= STr F(A,MY2)) + x.\s'rr(A(z)‘%F(A,M’(z)))

+O{(M)), (243)
whese | have expanded as in (2.29). The first term on the right in (2.43) is the scalar
potential of Eq. {2.21): F(A,M?) = AM?{(M?JA?). The second term gives the one-
foop gaugino sl enexgy, Figs. 8 and 9. To compase this contribution with the one
asising from the shift in the tree level relation (2.12b), | define

bc= c+ M1 +un)e™" = O(h). (244)

Then by seasoning identical to that of Eqe. (2.34)-(2.37) we have
émy o bcox -9!%:—"2. (2.45)
It ia straightforward Lo verily that when the minimization equations (2.27) are imposed

(and the appropriate coefficients included) Eqa. (2.37) and (2.45) give the same result.
Since Vi_to, depends ou c cnly through the squared mass matrix M?, we obtain
Wi M) 2

by o — 22 = ST [——2 s FM)|. (2.46)
The right-band side of (2.46) and the last term in (2.43) are supertraces over the
same matrix valued function, OF(A, A3)/OM?, with different weight matrices, namely
A |8c and A(z). These matrices can be calculated, and one finds that when the
grou.d state conditions are imposed:

D OF aM’ aF

0=STrF= asrrf'- .S‘T‘raA A M (2.47)
the two contributions cancel identically, independently of the functional dependence of
S(M?A?) = M-3P(A, M?) on ils argument.
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23 The stalufity of the potential.

The results of the preceding section were obtained wsuber the assgmption that
the eflective one-loop potential is bounded from below. If the approxunate form (2.20)
is used, with #,p = 1, the potential is indeed | ded® for wy > 3 (acrrS)) aaa
function of ReT with ¢ and A fixed, but it is negative at its mnnmum s this duuuun
In view of the results of Sect. 2.2, this implien that it slopes (0 ~00 in soine directig
in the (c,A) plane. Mureaver, examination®® of the O(A2JA?} cortections to the ap-
proximation (2.20) shows that they destabilize the potential in the dicection HeT — 0,
of mg — oo, Explicitly, for M? >> A2, the integral (2.14) becomes

Victap = a—'——;A‘srrlxs(Al,’,/n'; (248)

where the notation Af} implien that the supertrace is aver the -ubcpua.- of massive
modes: m? >> A 'l‘he-uhlnlydghe potential thescfore dep on whether there

are more b or fermionic states :

_Sign(V)r_a = Sign(B — Fluige. (249)

For the theory corresponding Lo the tree potentiad (2.8),(2.9), one finds (B — F)urpe =
—4, and the potential is unstable. However loop correctiane calculated for this theory
are not valid at ficld values for which M? > A2, siace large M?(z) in the loop propa-
gators prok pazably large . At scales larger than the condensate scale
A. the gauge couplings are weak and there is no gaugino condensation. We expect?’
the effective theory relevant at acales betweea A, and the compactification scale Agyr
to be approximately described by the potential (28) but with & = 0 in Bq. (2.9a).
The masa spectrum of the corresponding efeclive supesgravily theory, evaluated at the
ground state z = zg of the tree potential with A # 0, satisfica®?

(B~ Fluiga=2N~2No-3=224 1 (2.50)

where N is the number of chira) supermultiplets and Ng the number of gauge multi-
plets, 50 the polential is bounded if

A=N-Ng-230. @351y

Of coutse one-loop corrections calculated for the effective theory with A = 0 also cease
to be valid for A2(3) > Alyr. However the condition (2.51), if satisfied, asaures that
an spparently stable ground state found using sn approximation kke (2.20} will not be
simply an artifact of that appraximation.

The reauits of the preceding section imply that the potential is unbounded
in some direction of parameter space unleas it ia positive definite everywhere. Since
V(M(z)) = 0 for Af3(z) = O, this implies in particular thot the slope at the origin
of M? must be pasitive. The hehavior at small A1? is governed by the quadratically
divergent tesm in (2.20), proportional to STrAf2.

For the supergravity theory defined by the potential (2.8), (2.9) (and by the
gauge field normalization matrix, Eq. (2.16), fas(z) = 8.45) one finda®*

STraf? = 24U ~ A - U) + O(p"). (2.52)
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For b £ 0,U = o, = 0 awd ¢¥ > 0 at the tree gronnd state, so STrM? < 0, asd the
potential is unbounded in the direction '":G =e¥ w00 Fch=0, U= ¥, 50 the
slope at the origin of g for , = 0 depends on the sign of A, defined in Eq. (2.50).

If we split the loop integrals into two regions
a)  IWSAL h#o, 2.53u)

8 A< S Ar h=0, (2.53b)
the effective one-loop polential takes the general form:

Vit = STeVa(M?,A2) + STrV(M?, A2,1,AY),
V. = MUF.(M/AY)

Vo = M*RUM[AZyr. A2 ALus), (251)
where M? and M? axe, respectively, the appropriste mass matrices for regions {a) and
(b) of integration. If the quadeatically divergent term in Vjy; is positive and dominates
that ia V), the slope at the origin of m}, will be positive and the potential may be
positive semi-definite everywhere.**® Tkis requires in particular A > 0, or since A as
defined by Eq (2.50) is an integer

A2 (2.55)
1] , with the inchuion of one-loop corrections to condensate effects, Lo be dis-

cussed below, the interpretation of the effective parameter A that actually governs the
slope at the origia may be modified, and it ia not nucessasily an integer.

‘The mass matrix relcvant to region (b) is of the form

Mg = 0) = A(ReT) 25 (w) = B(ReT) > (w) + O(h) = i (), (2.56)

where | have used (2.12h), and since A2/Aly 1 (see Eq. (2.23)) depends only on w, the
modified one-loop potential (2.54) is still of the form (2.25). Then the reasoning leading
to the conditions (2.27), and the conclusions of Sect. 2.2 regarding the cosmological
conetant, are still valid.

Using approximations of the form (2.20) for both terms in (2.54), the potential
has been studied™® pumerically by varying its parameters. Solutions Lo the mini-
smization equations wese found for plausible values of lhe uncertainty factors 7; and p,,
small vdmddudv-kndwmtherw;eQ'-wA- 8. This corresponds, via Eqs.
(2.7) and (2.10), to 1/16 £ agasr £ | where | assume that

06 < b < 0.56, (2.57)

i.e., that the hidden gauge group Gy satisfiea SU(3) C Gra C Es. The poten-
tial for onc such solution is shown in Fig. 10. As the vacuum is degenerate absolute



Figure 10: The one loop effective po-
tential in the ¢ — (ReT)~" plane for
fixed values of the other dyaamical vasi-
ables in the case where & minimum ex-
ists for fimile mg.
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Figure 113 Una loop contributions to
the oscalar (v} solf energy in & resor-
malizable SUSY thaory which vanish
when trea lavil masees (x) vanioh.

Figure 121 Gaigino mass repormal-
ization for monvaclehing tree-level gaug-
ino mase (x).
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Figure 13: Contributions from mcaresormalizable intesactions 1o (a,b) solt SUSY
breaking terma in the effective potential and to {c) scalar couplings Lo gavginos.
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g seabes we nob deteanimag, bat their ratios are determined; one finds

mg/mp ~ 003" Agyr/ing ~ ﬁ’“/m, (2.58)
whese § ia one of the threshold factors. '

As before, we can expand the potential (2.54), or the corresponding effective
Lagrangian, about the ground state field configuration to study solt supersymmetry
breaking in the olwervable sector. One finds*® that there are again no *A-terms”, ie.,
terma propostional to the superpotential W (yp). llowever, if one simply integrates the
expression (2.14) over A < [pf? < A2y,p with Af? replaced by Af? one finds (including
8 thieshold uncertainty factor §) soft SUSY breaking terms in the potentia) that ase
propostional to the factor

a(w) = Wn(FAfALyy). (2.59)
Note that this [actor does not grow with the cut-off acales for fixed w. It is as ill-
detestnined as any of the fnite (ie., cut-off independent) terma. The shape of the
potential foc ¢, = 0 is in fact not very sensitive Lo its presence; setting ¢{w) = 0 has
little influence™ om the: characteristics of the solutions to the minimization conditions,

However, we wish to ascertain the peesence or absence ol-nll SUSY breaking
nd demtly of the details of the potential; therefore we sh Auumenpnonlhnl
-(u) #0. We then ind two types of SUSY breaking lerma umng from cegion (b) of
loop integration. First, for A = 0 and c # 0 gauge inglet and gauginos have
SUSY breaking trec-level masses proportional to the gravitino mass. These masses
are renormalized al one loop through the standard diagrans, Figs. 11 and 12, of
& renosmalizable (softly broken) SUSY gauge theory. These terms simply represent
a renosmalization of the parameters that define the theory at scales s > A above
gaugino & tion, and change qualitatively the features of the physice at
scales g < A,. The mase termae g ted by the disg of Figs. 11 and 12 would
in fact vanish if we first renormalized (st one loop) the cffective theory for 4 > A, and
then let < AA >4 0 to determine he effective theory for p < A..

A sccond source of soft SUSY breaking terms in the effective one-loop scalas
potential i from nonrenormalizable interactions. Expanding tihe term ¢ in the tree
potential for regiom (b);

Vigu =" +V+D (2.60)
yields the one loop contributions of Figs. 13a.b to terma that are quadratic (roass
termw) and cubic (but not propartional to W ()} in the gauge nonsinglet scalar fields.
However, the elfective scalar one-loop Lagrangian, including background gaugino field.,
aleo containe the A\-dependent terme generated by the diagrams of Fig. 13c. When
the diagrams of Fige 13ab and 17c are added the v} and ] terms in the effective
oae-loop Lagrangian, as expanded about the A # 0 tree vacuum, ace propostional® to
< ¢#3 4 12X >. On the other hand, the nonderivative part of the Lree Lagrangian
valid at scales > A, i (inchuding oaly scalar and gaugino fields)

£(2,3) ~ Cxa(z,3) = (P + %7\,\)’ +V+D. (2.61)
The vanishing of the tree level vacuum energy for a ishing gaugino condensat
<y %L\ >=0 (262)
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slumbd alao imply Uhe vamsbing, ot seales bolow A, where < A >a b £ 0, of the st
SUSY breaking terms gencratad by the diag of Fig. 13c.

Oune migit thea fer whether the contribution of region (b) of bup integra-
tion is entirely cancelled Ly one-loop contributions Lo gaugine condensation effects,
in which case the slope of the effective one-loop paential would be negative at the
arigin of mg. This is alinost certainly not the case. The effective tree potential of Eus.
(2.8) and (29) llut defines the eflective theory for g < A, can be obtained from the

eflective & Lagrangian of Eq. (2.61) by the replacement < AA >— [(;)
‘The eflective scalar mass matrix, oblained as the second (c fant) scalar deri
of the effective Lagrangian is not invariant under this uphcemcnl

[} 8

W< M >=0, E“") #0, (2.63)

Oue could therefore conjecture that the net efliect of region (b) loop contributions, aftes
inclusion of loop casrections Lo condensate effects, is only o modily the contribution of
scalar loopa. Using thia conjecture one finds™ that the effective value of A — A,;(w)
that governs the slope of the potential near my = 0 is & {generally noninteger) function
of w, independent of N and Ng. A positive semi-definite potential can occur for
w < 1.7 (agur > 04), and the value of A, y(w) lum- oul. to be naturally of ordes
unity, which is consistent with the results of the described above that
require a value & ~ 1 for the existence of a solution to the minimization equations.
The functional form of A.y(w), and hence the candition w < 1.7, depends on the
preciae functional form the potential, Eq. {2.9a), while the qualitative results of Sect.
2.2 are independent of this.

llnweva.thenbovereuomngnnntrulyconuﬁmmunndob&nnlbe
ctlective Lagrangian, incorporating the correct ay ctry propesticn, that is appeop
ate for the description of physics scales 4 < A; by a simple and uni itution
A\ = f(2) in the Lagrangian valid at oulu # > A.. The correct promduu MMt
first determine the cffective supesp § priate for scales u < A,; the efective
Lagrangian is then detesmined by the nundnd peoacription® for N = 1 supecgravity.

Therefore, to correctly incorporate one-loop efiecta from physics at scales u >
Ao one should firat calculate the effective one-loop Lagrangian, including corrections to
lings, relevant at these scales. For the effective theory with A = 0, all the
quaduucally divergent contributions that have been calculated thus fars! 4882 |y ye
the property that they are proportional to terms that appear in the troe Lagrangian
of that theory. Thie strongly suggests that these terine can be interpreted as feld
and Kihler potential lizations in such & way that the troe plus quadratically
divergent oue-loop effective Lagrangian can he cast in standard form.> Onc could then
define a corvected effective “tree® Lagrangian valid st acales just below A, fullowing the
procedure of Affleck et al.,* ta which, of course, the one -Joop corrections of Sect. 2.2
should be added. On the other hand, logarithmically divergent corrections involve™%*
termas of higher ordec in space-time and Kihler derivatives and in lhe Kihler and space-
time curvatures. Interpreting these corrections in & similarly t fashion would
first require a generalization of the standard N = ) supergravity Lagrangian to higher
derivative terma.

As mentioned above, the structure of the eflective potential relevant to the
determination of the vacuum energy is i itive to the p e of logarithmically
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divergent tenins, Eq. (2.59). 1o particutas, a deterinination of the guadratic divergences
is sulficient to rexolve the issue of the boundedness of the potential. On the other hand,

the logasithmic divergences must be understood o fully address the question of soft
SUSY breaking. Neglecting radiative corrections to condensate effects (ie., to A
couplings for g > A,), one finds™ contributions from nonsrcnormalizable interactions to
gaugina rasses that are of order {1x)"?m} and (4x)"IA%mg. A complete evaluation
of the quadratically diverge:i contributions would at least determiine whether or not
terms of the second type are proent and set a bound on anc-loop gaugino snasses.

2.4 Passibilitics for a viable phenomenology.
Let me et summiasize the ceaulis™* of (he preceding scctions.

In the noded studied above it was found that if the one-loop effective potential
ia not positive semi-definite cverywhere it is unbounded from below, resulting in an
infinite, negative logical tant and infinita gravitino mm-l:leuly;phynically
unacceptable solution. If the potential is bounded, the ground statc vacuum encrgy
va.m-ha One possibility ie l.lul the groud state is umquely determined with mg = 0
and k p y. This is equally unacceptable since we live in a vacuum
that is noninvariant undu' SUSY. A numerical analysis®*® of the potential shows that
there are plasible wvalucs of the paramecters for which an acceptable vacuum, with
beoken SUSY, a nite gravitino mase and no cosmologiced constant, can occur. In this
case the vacuusm has an infinite degencracy, and the scales mg, i and Agyr remain
undetermined, akbhough theis ratios are fixed. The degeneracy i lifted by fixing, for

ple, the p ter c that app in the effective potential, Eq. (2.9a). 1f this
parameter ia interpreted! as propostional to the vev of the 10-d thise-form, Eq. (2.4a),
_then all scales are d jncd by the topology of the pact manifold. Furthermore,
the quantization condition (2.4b) suggests that the vacuum encigy is discrete, and
therefore docs not have an associated, masslas Goldstone mode.

Assuming the existence of a vacuum with finite my, the effective one-loop La-
grangian can be expanded to determine whether effective soft SUSY breaking terms
are generated in the observable sector. No mich terma are founc to be generated by
one-loop corrections im the effective theory for yu < A.. However, the potential can
be bounded and pasitive scmi-definite only if we include loop corrections from physics
at scales A, < g < Acur, and a complete evaluation of their effects requires further
study. The heusistic arguments of Sect. 2.3 suggest that no soft SUSY breaking terms
are genesated in the cffective one-loop scalar potential.

I, in addition, no gaugino masscs are generated, it is difficult to guess the origin,
or estimate the magnitude relative to mgy, of SUSY breaking effects in the observable
scctor, in particular the ratio m, fmg that governs the gauge hierarchy discussed in
Sect. 1.5. It could be that scalar masses arise only in a vesy high loop ovder and are
therefore supprexsed by many powers of the effective loop expansion parameter 1/ 1643,

Alternatively they might be dominated by effects of higher string andfor Kaluza-
Klein modes and thus suppressed by powers of mg/mp andjos a'm}, whese o ia the
inverse string tension: of <mjz2. In cither case the observed gauge hierarchy might be
realized but cestainly cannot be calculated with present technology.

1An altcmative interpectation, in Lerms of the vev of 8 acalwr field, has recemtly been propoued
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B mstead, quantum oty from seales \, < g < Nor genetate nosvan
isling gangine masses at one koop, they ase cither of ordes

iy ~ mz/(ln)'m;. (2614)
ot of wrder
ny ~ Almga/(4x)in}d < 100mg/(4x)’m} (2 619)
where § have used the rewult
mga ~ 0.3A, ~ 0.1Aqur ~ (107* - lo")/\/d.,. (2.65)

As explained in Sect. 1.5, (2.64a) requires

ma < 10" mp (2.66a)
for a viable gauge hicraschy, while {2.64b) requisres

mg < 107%mnp. (2.668)
If the pasamneter c is propostional to the vev of Hin., Eq.(2.48), the quantization

condition (2.4b) implies & quantization condition for ¢ of the form*®

m (2-'11) / dE™"in = 2an (2.67)

where €tma io the anti-symmetric Levi-Civita tensor and | use complex coordinates for
Lhe compact 6-manifold: ¢/mn = (€144).* In wriling (2.4b) and (2.67) the metcic of the
compact manifold M has been normialized by defining®

Fim = * qa(0)

. my \* .
/M L5 det g (0) = ('n—";') ) (2.68)
‘Then onie expects
m
2';,) A= "eimn %1 (2.69)
whicl: implies for n # 0:
<= 10°n/1 2 1000 (2.70)
Using the range of values (2.57) foc & gives
mg =~ Jg(o.c - 12) x 107 : (2n)
which may, from (2.70) be consistent with the requi (2.66) for a viable gauge

hicrarchy. It is aluo interesting that a value as lasge as (2.70) for ¢ might also allow for
a successful inflationary scenasio.’”

‘The model studied in the preceding sections is in fact & toy model when in-
terpreted as ging from the compactification of ten-dimensional supergravity. The

topulogy of the compact manifold is characterized by llodge numbers §;, that are posi-
tive integers and determine®® the spectrum of massless states (before SUSY breaking).
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Dis paastis ular the noanbes of maties geaciations s given by byy — byy; observition there
fure senuines b 2 3 In addition to the scalar field S, there are a total of by, gange
nonsinglets 1, wheteas ouly oae (T') was included in the above model. Qne should
therehste pin point the qualitative features of the model studied that assuse desirable
ivatuses at one loop and try 1o identify a class of more realistic models that incorporate
the samie features.

As | will explain inore explicitly below, the sufficient ingrediests*? to ensure van-
ishing gauge nonsinglet masses at one koop are a) a partial invariance of the cifective
tiee Lagrangian under a noncompact lleisenberg group Gy of nonlinear transforma-
tions, b) a “no-scale” structusre™ of the tiee potential, and c) vanishing vacuum energy
at tree level. In this context § define “no-scale” by the absence of & term in the poten-
tial pmpomoml to ¢?, which, in the absenice of nonpesturbative effects, would force
an 4 ic solution mg = 0. In the general clase of models that
) consider the llu.slevel vacuum configuration has ; = 0, and its vacuum encrgy is
decermined by the contribution (2.9a), defined more gencrally by

o[ 79.Y "% y
U= (_555) |5§ . (2.72)
Thue the condition for vanishing vacuumn energy at tree level is

=% _ 7
a! = Eg =0 (2-7‘!)

The vanishing of the dogical constant at one-loop for the model studied above
follows esecntially from dimensional analyris and therefore should be s feature of a much
more genesal class of modcls. Finally, the vanishing of A- tcrml and possibly gaugmo
nosees - st ane-loop, is intimately ted with the vanishing of the c logical
constant. There is 0o reason why this result should not geueulnzc to more realistic

dels that incorporate the feat a), b), and c) enumerated above, although at
piesent we have no undesstanding of il in terma of aymmetries.

To see how these conditions assuse the vanishing of gauge nonsinglet scalar
masses at one-loop, recall first (Sext. lb) that exact invariance under Gy implics
m, = 0 to all orders. This invasiance is broken by both the superpotential W(yp) and
the gauge= interactions. In a broken SUSY theory, the latter will induce scalar masses,
via the disgrama of Fig. 11(b), of ocdes

mj ~ ‘g;m:. (2.74)

o maet euperstring-inspired , a8 in the toy model studied above, the
tree-level gaugino masees are ddcnmncd by the S-ficld:

my =e%(S + 3)5-5 (2.75)

and vanish when the condition (2.73) for a vanishing cosmological constant at tree-level
ia satisficd. The presence of 8 superpotential W(yp) induces the contributions shown
in Fig. (Ba) to the scalar sclf energy. By supersymmetry they cancel identically for
vanishing scalar and chiral fermion tree-level
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o oniber to generate fiing gange inghet s alar thusses o teeds e
interplay of & Gy breaking interaction (W(y) # 0) with a SUSY srzaking intoraction
(e.g.. W(S) # 0). An analysis®? of the possible contributions to scaius shows
that they vanish if Eq. (2.73) in satisficd. This is a one-loop argument ouly. ‘I'he
conventional wisdom is that gauginas scquire masses at one loop and therefore that
scatars will acquire masses, Eq. (2.74), at the two-loop level. I, however, one-kn;
contribulions Lo gaugino masses vanish, as suggaded by the study of contributions
from scales 4 < A, where the theory is unambiguously specified, it is unclear whether
scatars will acquire masses at higher loops. A more thorough understanding, in terms
of sy tries, is needed Lo better addreas this question.

Since, on the other hand, the vanishing of scalar can be understood i~
terma of a partial Heisenberg symimctry Gy, we can ask whether any potentially real-
istic models nossess thie pastial aymmetry. It has boea shown that Gy is a mnn.nl,

of a partial symmetry, which is exact for vanishing gauge couplings, of ten-di
supesgravity. Undes this symmetry the gauge ficlde Ay and the antisymmetric ﬁeld
Byyn (of which the three-form Hyaw, Eq. (24), is the jant derivative) ¢
according to:

ALy~ AL+ G,
1
Buw — Bun + ﬁ'ﬁfu"fq. (2.76)

where Ha is 8 harmonic form. In Calabi-Yau compactification,® where i%= SU(3)
subgroup of one Ey is identified with the holonnmy group of the compact manifold, the
fimit of vanishing gauge coupling tant is singular, and the approps’ate invariance
under Gy may nob survive®™ in the effective 4-d theocy. flowever, it is expected to
survive for orbifold compactification.

Quite generally, consider an effective 4-d Kihler potential of the form
6=G(T.1,C.C) + Gi5(5,5) + W |W(C) + W(S)? 2.77)
where W(5) # 0 induces trec-level SUSY breaking, and

(T, T, CC)=~):Q.hu‘-}:P.hdau' (2.78a)

[ ]
‘The functions Uy are of the form

Us=Ta+ 1-‘4 - Zc“ci‘ (2.78%)
and the Ly x Lp matsices U® are of the form
=T+TF - Ci*Cp". (2.789)

In Equ. (2.77), (2.78) the ficlds S, T4 and some of the C’s are gauge singlets. The
superpotential defined in this way yiclds an effective tree-level potential of the form:
V=G50 + Fn+ D4V, (2.79)

where

n= ZQ‘ + Z Pglg—3 (280)
A [ ]



-y}

and D are V are, sespectivdy, the usual D- and F- tenns that are gquartic in the
gauge aonsinglet fickls. ‘The criteria enumerated above, that assure vanishing one-
kop scalar masses, are satisfied for §s = n = 0. Speific examples, based on orbifold
cnpactification, of theorics satisfying these criteria have been given by Ferrara el al.®
with ficld content and Kikler potential specified by the following tuble:

ng, ng Q P L
0 1 - 1 3
3 0 100, - -
2 0 12 - -
1 1 1 12

The existence of these effective thoories suggesl that a superstring theory in
ten dimensions might yicld an effective ficld theory in four dimensiona with a realistic
pasticle spectrum and the possibility of gencrating the hierarchy of scales needed ta
understand the obeesved scale of dlectroweak symmetry breaking,
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