Quantum Field Theory III

HS 10, Exercise sheet 2

Due date: 06.10.2010

Exercise 1:

In the lecture we derived the commutation relation $\left\{Q_{\alpha}^{I}, \bar{Q}_{\dot{\alpha}}^{J}\right\} = 2\delta^{IJ}(\sigma^{\mu})_{\alpha\dot{\alpha}}P_{\mu}$ and the definition for the central charges $\left\{Q_{\alpha}^{I}, Q_{\beta}^{J}\right\} = \epsilon_{\alpha\beta}Z^{IJ}$. By using these relations plus the Jacobi identity show the following commutation relations

a)
$$\left[\bar{Q}_{\dot{\gamma}}^{K}, Z^{IJ}\right] = 0,$$

b)
$$[Q_{\gamma}^{K}, (Z^{IJ})^{*}] = 0.$$

Exercise 2:

In the lecture we showed the commutation relations $\left[Z^{IJ}, Q_{\alpha}^{K}\right] = 0$ and $\left[(Z^{IJ})^{\star}, \bar{Q}_{\dot{\alpha}}^{K}\right] = 0$. By using these relations plus the Jacobi identity show the following commutation relations

a)
$$[Z^{IJ}, Z^{KL}] = 0$$
,

b)
$$[(Z^{IJ})^*, (Z^{KL})^*] = 0,$$

c)
$$[Z^{IJ}, (Z^{KL})^*] = 0.$$

Exercise 3:

The internal symmetry group fullfills the relation $[B_a,B_b]=if^c_{ab}B_c$, where f^c_{ab} are the structure constants. Moreover the internal symmetries do not commute with the fermionic generators, but obey $\left[Q^I_{\alpha},B_l\right]=S^I_{lJ}Q^J_{\alpha}$ and $\left[\bar{Q}^I_{\dot{\alpha}},B_l\right]=-\bar{Q}^J_{\dot{\alpha}}S_{lJ}^I$. Using the Jacobi identity of B_a , B_b and Q^I_{α} prove that

$$[S_a, S_b] = i f_{ab}^c S_c.$$

Exercise 4:

Show that P^2 is a Casimir of the supersymmetry algebra, i.e. show that it commutes with all operators of the supersymmetry algebra.

Exercise 5:

Show that W^2 does not commute with the fermionic generators, i.e. $[W^2, Q^I_{\alpha}] \neq 0$ and thus W^2 is not a Casimir of the supersymmetry algebra.