Quantum Field Theory I, Exercise Set 2

HS 08 Due: 9/10 October 2008

1. Contour integral representation of propagators

Prove equations (3.35), (3.36) and (3.37) in the lecture notes.

2. Properties of the free scalar field

Consider a scalar field given by

$$\varphi(x) = \int d^3p \left\{ f(\vec{p}) a^*(\vec{p}) e^{i(\omega(\vec{p})t - \vec{p} \cdot \vec{x})} + \text{h.c.} \right\},\,$$

where $a^*(\vec{p})$ and $a(\vec{p})$ satisfy the canonical commutation relations, and f and ω are some functions on \mathbb{R}^3 .

(i) We require the field to describe a free particle of mass m, i.e. φ should satisfy the Klein-Gordon equation

$$(\Box + m^2)\varphi(x) = 0.$$

What does this imply for ω ?

(ii) We additionally require the field to satisfy Poincaré covariance:

$$U(\Lambda, a) \varphi(x) U(\Lambda, a)^{-1} = \varphi(\Lambda(x+a)). \tag{1}$$

Show that this implies that

$$i\Delta(x-y) = [\varphi(x), \varphi(y)]$$

is Lorentz invariant.

- (iii) Show that the Lorentz invariance of Δ implies that, up to a phase, f is equal to $\frac{c}{\sqrt{2\omega(\vec{p})}}$, where c>0 is some constant.
- (iv) Show that c=1 if we impose the canonical commutation relations (3.31)

$$[\pi(0, \vec{x}), \varphi(0, \vec{y})] = -i\delta(\vec{x} - \vec{y}).$$

(v) In class it was shown that the propagator Δ satisfies causality, i.e. vanishes for space-like arguments. Replace now the bosonic creation and annihilation operators $a(\vec{p})^*, a(\vec{p})$ by fermionic creation and annihilation operators, which satisfy the canonical anticommutation relations

$$\{a(\vec{p}), a(\vec{p}')\} = \{a^*(\vec{p}), a^*(\vec{p}')\} = 0, \qquad \{a(\vec{p}), a^*(\vec{p}')\} = \delta(\vec{p} - \vec{p}').$$

Show that causality cannot hold, i.e. the anticommutator $\{\varphi(x), \varphi(y)\}$ does not vanish for space-like arguments. Thus, the free scalar field describes bosons. This is a special case of the celebrated *spin-statistics theorem*.

(vi) Using the Poincaré invariance (1) of the scalar field $\varphi(x)$ and

$$\varphi(x) = \frac{1}{(2\pi)^{3/2}} \int \frac{\mathrm{d}^3 p}{\sqrt{2\omega(\vec{p})}} \left\{ a^*(\vec{p}) e^{\mathrm{i}(\omega(\vec{p})x^0 - \vec{p}\cdot\vec{x})} + a(\vec{p}) e^{-\mathrm{i}(\omega(\vec{p})x^0 - \vec{p}\cdot\vec{x})} \right\}$$

(equation (3.21) in the lecture notes), derive the explicit expression for the action of the Poincaré group on Fock space:

$$U(\Lambda, a) a^*(\vec{p}) U(\Lambda, a)^{-1} = e^{i(\omega(\vec{p})a^0 - \vec{p} \cdot \vec{a})} a^*(\overrightarrow{\Lambda p}) \sqrt{\frac{\omega(\overrightarrow{\Lambda p})}{\omega(\vec{p})}},$$

(equation (3.20) in the lecture notes).

3. Representations of the Dirac algebra

Consider the Dirac algebra generated by the elements $\{\gamma_0, \gamma_1, \gamma_2, \gamma_3\}$ satisfying the anticommutation relations

$$\{\gamma_{\mu}, \gamma_{\nu}\} = 2g_{\mu\nu} .$$

Here g is the Minkowski metric g = diag(1, -1, -1, -1).

(i) We choose a new basis of the Dirac algebra, $\{a_0, a_1, a_0^*, a_1^*\}$, defined through

$$\gamma_0 = a_0^* + a_0$$
, $\gamma_1 = i(a_1^* + a_1)$, $\gamma_2 = a_0 - a_0^*$, $\gamma_3 = a_1 - a_1^*$.

Show that the elements a_0, a_1, a_0^*, a_1^* satisfy the canonical anticommutation relations

$$\{a_{\mu}, a_{\nu}\} = \{a_{\mu}^{*}, a_{\nu}^{*}\} = 0, \qquad \{a_{\mu}, a_{\nu}^{*}\} = \delta_{\mu\nu}, \qquad (\mu = 0, 1).$$

(ii) Define the "particle number operator" $n_{\mu}=a_{\mu}^{*}a_{\mu}$ for $\mu=0,1.$ Show that n_{0} and n_{1} commute, and that

$$n_{\mu} = n_{\mu}^2.$$

(iii) Show that the only irreducible representation of the Dirac algebra is four-dimensional. Hint: Diagonalise n_0 and n_1 , and pick a vector $|0,0\rangle$ with eigenvalues 0. Study the action of the Dirac algebra on $|0,0\rangle$.

4. Discrete symmetries of the Dirac equation

Consider the Dirac equation in the presence of an external electromagnetic field A_{μ} :

$$(\gamma^{\mu}(\mathrm{i}\partial_{\mu} - eA_{\mu}) - m)\psi = 0.$$

We work in the "chiral representation"

$$\gamma^0 = \begin{pmatrix} 0 & \sigma_0 \\ \sigma_0 & 0 \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} 0 & -\sigma_i \\ \sigma_i & 0 \end{pmatrix},$$

where $\sigma_0 = \mathbb{1}$ and $\sigma_1, \sigma_2, \sigma_3$ are the Pauli matrices. The goal of this exercise is to determine explicit expressions for the three discrete symmetries $\mathbb{P}, \mathbb{T}, \mathbb{C}$ of the Dirac equation.

(i) The parity transformation \mathbb{P} is of the form

$$(\mathbb{P}\psi)(x) = U_{\mathbb{P}}\psi(Px),$$

where $P(t, \vec{x}) = (t, -\vec{x})$, and $U_{\mathbb{P}}$ is an operator on \mathbb{C}^4 . Determine \mathbb{P} from the requirement that

$$(\gamma^{\mu}(\mathrm{i}\partial_{\mu} - eA_{\mu}) - m)\psi = 0 \qquad \Longleftrightarrow \qquad (\gamma^{\mu}(\mathrm{i}\partial_{\mu} - e\tilde{A}_{\mu}) - m)\mathbb{P}\psi = 0,$$

where $\tilde{A}(x) = PA(Px)$.

(ii) The time-reversal transformation \mathbb{T} is of the form

$$(\mathbb{T}\psi)(x) = U_{\mathbb{T}}\psi(Tx)$$
.

where $T(t, \vec{x}) = (-t, x)$. Determine \mathbb{T} from the requirement that

$$(\gamma^{\mu}(\mathrm{i}\partial_{\mu} - eA_{\mu}) - m)\psi = 0 \qquad \Longleftrightarrow \qquad (\gamma^{\mu}(\mathrm{i}\partial_{\mu} - e\hat{A}_{\mu}) - m)\mathbb{T}\psi = 0,$$

where $\hat{A}(x) = PA(Tx)$.

(iii) The charge conjugation \mathbb{C} is of the form

$$(\mathbb{C}\psi)(x) = U_{\mathbb{C}}\psi(x).$$

Determine \mathbb{C} from the requirement that

$$(\gamma^{\mu}(\mathrm{i}\partial_{\mu} - eA_{\mu}) - m)\psi = 0 \qquad \Longleftrightarrow \qquad (\gamma^{\mu}(\mathrm{i}\partial_{\mu} + eA_{\mu}) - m)\mathbb{C}\psi = 0.$$