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1. Contour integral representation of propagators

Prove equations (3.35), (3.36) and (3.37) in the lecture notes.

2. Properties of the free scalar field

Consider a scalar field given by

ϕ(x) =

∫

d3p
{

f(~p) a∗(~p) ei(ω(~p)t−~p·~x) + h.c.
}

,

where a∗(~p) and a(~p) satisfy the canonical commutation relations, and f and ω are some functions on
R

3.

(i) We require the field to describe a free particle of mass m, i.e. ϕ should satisfy the Klein-Gordon
equation

(� +m2)ϕ(x) = 0 .

What does this imply for ω?

(ii) We additionally require the field to satisfy Poincaré covariance:

U(Λ, a)ϕ(x)U(Λ, a)−1 = ϕ(Λ(x+ a)) . (1)

Show that this implies that
i∆(x− y) = [ϕ(x), ϕ(y)]

is Lorentz invariant.

(iii) Show that the Lorentz invariance of ∆ implies that, up to a phase, f is equal to c√
2ω(~p)

, where

c > 0 is some constant.

(iv) Show that c = 1 if we impose the canonical commutation relations (3.31)

[π(0, ~x), ϕ(0, ~y)] = −iδ(~x − ~y) .

(v) In class it was shown that the propagator ∆ satisfies causality, i.e. vanishes for space-like ar-
guments. Replace now the bosonic creation and annihilation operators a(~p)∗, a(~p) by fermionic
creation and annihilation operators, which satisfy the canonical anticommutation relations

{a(~p), a(~p′)} = {a∗(~p), a∗(~p′)} = 0 , {a(~p), a∗(~p′)} = δ(~p − ~p′) .

Show that causality cannot hold, i.e. the anticommutator {ϕ(x), ϕ(y)} does not vanish for space-
like arguments. Thus, the free scalar field describes bosons. This is a special case of the celebrated
spin-statistics theorem.

(vi) Using the Poincaré invariance (1) of the scalar field ϕ(x) and

ϕ(x) =
1

(2π)3/2

∫

d3p
√

2ω(~p)

{

a∗(~p) ei(ω(~p)x0
−~p·~x) + a(~p) e−i(ω(~p)x0

−~p·~x)
}

(equation (3.21) in the lecture notes), derive the explicit expression for the action of the Poincaré
group on Fock space:

U(Λ, a) a∗(~p)U(Λ, a)−1 = ei(ω(~p)a0
−~p·~a) a∗(

−→
Λp)

√

ω(
−→
Λp)

ω(~p)
,

(equation (3.20) in the lecture notes).



3. Representations of the Dirac algebra

Consider the Dirac algebra generated by the elements {γ0, γ1, γ2, γ3} satisfying the anticommutation
relations

{γµ, γν} = 2gµν .

Here g is the Minkowski metric g = diag(1,−1,−1,−1).

(i) We choose a new basis of the Dirac algebra, {a0, a1, a
∗

0, a
∗

1}, defined through

γ0 = a∗0 + a0 , γ1 = i(a∗1 + a1) , γ2 = a0 − a∗0 , γ3 = a1 − a∗1 .

Show that the elements a0, a1, a
∗

0, a
∗

1 satisfy the canonical anticommutation relations

{aµ, aν} = {a∗µ, a∗ν} = 0 , {aµ, a
∗

ν} = δµν , (µ = 0, 1).

(ii) Define the “particle number operator” nµ = a∗µaµ for µ = 0, 1. Show that n0 and n1 commute,
and that

nµ = n2
µ .

(iii) Show that the only irreducible representation of the Dirac algebra is four-dimensional.
Hint : Diagonalise n0 and n1, and pick a vector |0, 0〉 with eigenvalues 0. Study the action of the
Dirac algebra on |0, 0〉.

4. Discrete symmetries of the Dirac equation

Consider the Dirac equation in the presence of an external electromagnetic field Aµ:
(

γµ(i∂µ − eAµ) −m
)

ψ = 0 .

We work in the “chiral representation”

γ0 =

(

0 σ0

σ0 0

)

, γi =

(

0 −σi

σi 0

)

,

where σ0 = 1 and σ1, σ2, σ3 are the Pauli matrices. The goal of this exercise is to determine explicit
expressions for the three discrete symmetries P,T,C of the Dirac equation.

(i) The parity transformation P is of the form

(Pψ)(x) = UPψ(Px) ,

where P (t, ~x) = (t,−~x), and UP is an operator on C
4. Determine P from the requirement that

(

γµ(i∂µ − eAµ) −m
)

ψ = 0 ⇐⇒
(

γµ(i∂µ − eÃµ) −m
)

Pψ = 0 ,

where Ã(x) = PA(Px).

(ii) The time-reversal transformation T is of the form

(Tψ)(x) = UTψ(Tx) ,

where T (t, ~x) = (−t, x). Determine T from the requirement that
(

γµ(i∂µ − eAµ) −m
)

ψ = 0 ⇐⇒
(

γµ(i∂µ − eÂµ) −m
)

Tψ = 0 ,

where Â(x) = PA(Tx).

(iii) The charge conjugation C is of the form

(Cψ)(x) = UCψ(x) .

Determine C from the requirement that
(

γµ(i∂µ − eAµ) −m
)

ψ = 0 ⇐⇒
(

γµ(i∂µ + eAµ) −m
)

Cψ = 0 .


