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Chapter 1

Introduction

This course is about electronic transport in meso- and nano-scale conduc-

tors. First, the words “meso” and “nano” will be defined. Then, we will

provide specific examples of both fields (mostly mesoscopic physics). Nano-

physics and nano-technology are very popular subjects nowadays. Nano-

science deals with the creation and manipulation of objects whose size in

at least one dimension is less than 100 nanometer (1 nm = 10−9 m): for ex-

ample, a graphene film is few nanometer thick whereas its other dimensions

are of the order of a micrometer. Figure 1.1 shows typical length scales in

meso- and nano-physics. According to this rule, various things got the name

“nano”. An old nano-device is the scanning tunneling microscope (STM), cf.

Fig. 1.2, with a resolution down to a few Å (= 10−10 m). The STM exhibits

generic features of a nano-system: a atomic (nano-) scale object, the tip of

the STM, can be manipulated at the macroscopic scale; therefore, the system

is tunable and incorporates both quantum and classical motion. Further ex-

amples of nano-systems studied today in the context of electronic transport

are carbon nano-tubes and carbon nano-films (graphene) which are typical

nano-system. Generically, “nano” refers to a fixed length scale (nanometer)

in physics, biology, chemistry or material science. Depending on tempera-

ture, interaction, . . . , nano-physics can incorporate different effects. In total,

nano-physics is not so well restricted as the traditional meso-physics, which

is defined as transport physics for which quantum effects become important,

i.e., when the typical size of the object L is less than the typical inelastic

length scale Linelastic, L . Linelastic, which may be the coherence length Lφ

or the energy relaxation length Lrelax depending on the system studied. Fig-

ure 1.3 shows typical examples of micro-, meso-, and macro-systems. The size

1
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in high mobility semiconductors at T < 4 K
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Figure 1.1: Typical length scales in meso- and nano-physics. Taken from

S. Datta [1].

V

Tip

e
−

I ∼ e
−κz

κ ≈ 2.2 Å
−1

Figure 1.2: Sketch of an scanning tunneling microscope (STM). The STM

probes the density of states of a material using the tunneling current which

flows from the metal tip of the microscope to the surface. The tunneling

current depends sensitively (exponential) from the distance of the tip to the

surface; a resolution up to 0.1 nm is possible. For its development in 1981

The lateral resolution is limited by the size of the tip. The tip of a good STM

is made of a single atom giving it a lateral resolution up to 1 nm. earned its

inventors, Gerd Binnig and Heinrich Rohrer (at IBM Zürich), the Nobel Prize

in Physics in 1986.
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possible to manipulate!

Figure 1.3: Length scale of micro-, meso-, and macro-scopic systems together

with some examples.

of a meso-system is most of the time in the µm scale. However, sometimes

mesoscopics crosses over to the new nano-physics.

Mesoscopic physics deals with subjects from quantum physics, e.g., in-

terference, quantum statistics, and interaction. Interference plays a role in

systems with continuous spectrum (complicated wave functions in dirty sam-

ples or in a chaotic dot). Furthermore, the discrete spectrum in quantum

dots, metallic granule can be seen as an effect of interference. A famous

example of interference is the Aharonov-Bohm ring with a possible which-

path experiment. Unlike “classical” atomic physics, mesoscopic physics deals

with many indistinguishable particles and, therefore, the consequences of the

quantum statistics (Fermi, Bose, . . . ) become visible. In general, interaction

effects play a more important role in mesoscopic systems which are essen-

tially zero dimensional (0D) compared to physics in 2D and 3D bulk material.

Moreover, new effective particles (quasiparticles) which appear in interacting

3



1.1 Conductance fluctuations

L

d

impurities

ℓ

H

L

Figure 1.4: Dirty two-dimensional conductor. The crosses denote the position

of the impurities which fluctuate from sample to sample. The mean free path

is denoted by `. An additional magnetic fieldH may be applied perpendicular

to the sample.

many-body systems can be studied, e.g., spinons and holons in 1d Luttinger

liquids or anyons in quantum Hall effect materials. Additionally, mesoscopic

physics can shed light on fundamental problems in quantum mechanics, like

the measurement problem (=interpretation of quantum mechanics) or nonlo-

cality (Bell-type experiments). In the following, we will briefly discuss some

interesting topics in meso- and nano-physics.

1.1 Conductance fluctuations

Mesoscopic physics, a relatively new subject, started in a narrow sense with

the theoretical work by Altshuler who predicted strong fluctuations in the

conductance G (in mesoscopic physics, the inverse resistance G = 1/R and

not the resistance R is the quantity which is typically studied) of quasi two-

dimensional films [2], provided the conductor describes coherent transport of

a dirty sample, i.e., quantum interference plays a role and the probability of

an electron to reach the other side depends on the position of all impurities

in the sample, cf. Fig. 1.4. Therefore, sample to sample fluctuations of the

conductance are expected and the standard way to characterize fluctuations

is by its variance

〈δG2〉im = 〈(G− 〈G〉im)2〉im (1.1)

4
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a

b

Figure 1.5: Two paths contributing to the conductance. The magnetic field

induces an Aharonov-Bohm flux which changes the relative phase between

these paths. The sensitivity with respect to the magnetic field (the change

of the magnetic field which changes the conductance on the order G0) is a

magnetic flux quantum Φ0 = hc/e over the area of the sample L2.

where the subscript “im” denotes the average over all possible configurations

of impurities and

〈G〉im = dLσ/L (1.2)

is the average conductance. Altshuler found that the standard deviation

δG =
√
〈δG2〉im ≈ G0 (1.3)

is universal and approximately given by the conductance quantumG0 = e2/h,

with h = 2π~. The relative fluctuations

δG

〈G〉im ≈ e2

h

1

d σ
=

3π

2k2
Fd `

(1.4)

do not depend on the system size L; here, we have inserted the Drude con-

ductivity σ = 2e2k2
F`/3hπ with ` the mean free path into Eq. (1.2). This

result is surprising if one believes that quantum (or classical) self averaging

should reduce relative fluctuations at large distances.

Nevertheless, it is a fact that self averaging is absent in a coherent meso-

scopic sample. Soon, Lee and Stone considered fluctuations of the conduc-

tance as a function of the applied magnetic field or other external parameters

[3]. The following argument provides an easy way to understand why the

conductance will fluctuate with changing magnetic field: the conductance

is proportional to the transfer probability Pa→b of an electron starting from

the left side to reach the right side of the sample. The quantum mechani-

cal probability (in the path integral picture) is the square of the sum of the

amplitudes of all possible paths,

Pa→b = |A1 + A2|2 = |A1|2 + |A2|2 + A1A
∗
2 + A∗1A2; (1.5)

5



1.1 Conductance fluctuations

G

G0 = e2/h

Φ0/L
2

H

Figure 1.6: Conductance fluctuations due to changes in the applied magnetic

field.

here, we consider for simplicity only two paths with amplitudes A1,2, cf.

Fig. 1.5. For the average probability 〈Pa→b〉im, the cross-terms A1A
∗
2 and

A∗1A2 vanish due to the fact that the relative phases are randomly distributed

(except for special situations leading to the weak-localization corrections

which we discuss later); the two probabilities simply add up 〈Pa→b〉im =

|A1|2 + |A2|2 = P1 + P2 without any interference. In the calculation of the

second moment

〈P 2
a→b〉im ∝ (P1 + P2)

2 + 2|A1|2|A2|2 = 〈Pa→b〉2im + 2P1P2, (1.6)

terms with A1A
∗
2 and A∗1A2 also drop out while performing the impurity

average. On the other hand, there is an additional term 2|A1|2|A2|2 which

does not average out. The standard deviation is given by

δPa→b =
√
〈(Pa→b − 〈Pa→b〉im)2〉im =

√
2P1P2. (1.7)

Now, if we apply even a weak magnetic field, the relative phases between

all the paths change and the conductance changes. Thus, the conductance

fluctuates in the same way as it would for different realizations of the impurity

potential. A more detailed calculation shows that the standard deviation

of the conductance fluctuation is of the order of the conductance quantum

G0 = e2/h, cf. Fig. 1.6. Similar fluctuations in the conductance also appear

as a function of voltage bias, cf. Fig. 1.7 [4].

1.1.1 Weak localization

The study of localization was pioneered by P.W. Anderson already in 1958

[5], i.e., long before the discovery of the conductance fluctuations. Depending

on the strength of the disorder, one talks about strong or weak localization.
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eV
~vFℓ/L

2

G = ∂I/∂V

V

I

G0

(b)(a)

Figure 1.7: Fluctuations in the differential conductance due to variations of

the applied voltage.
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E

Tamm states

EF

Conducting band

Valence band

Figure 1.8: Typical band structure of a semiconductor. In the conduction

and valence band, electronic states are extended (conducting). The Fermi

level lies within the band gap where no bulk states exist. Nevertheless, there

may by some surface- (Tamm-) state even within the band gap.
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1.1 Conductance fluctuations

a

Impurity

e
−

Figure 1.9: Paths responsible for weak localization.

Localization is an effect in dirty noninteracting electronic systems. In quasi

three-, two-, or one-dimensional sample where the impurity potential is peri-

odic (a crystal), a band structure appears as known from condensed matter

physics, cf. Fig. 1.8. Electrons with energies lying in one of the bands propa-

gate freely through the crystal, whereas electrons with energies in the gap do

not propagate at all [except possible surface- (Tamm-) states]. What happens

now if we randomly shift all these impurities a bit? In quasi one-dimensional

systems, all states become localized. In three dimension a mobility edge

forms, i.e., localized states appear only at the boundaries of the band. If

we increase the disorder, more and more states become localized until, for

strong disorder, all states become localized.

There are also corrections to transport due to localization physics before

the system turns insulating, weak localization. Here, we are interested in the

return probability Pa→a for an electron starting at the position a returning

back after a certain time. The probability is the square of the sum of the

amplitudes of all path. For simplicity, we consider again only two path

(black and gray in Fig. 1.9): the black path goes counterclockwise (with

amplitude Aª), whereas the gray path is its time reversed analog which goes

clockwise through the same set of impurities (with amplitude A©). If time

inversion symmetry is not broken, i.e., without an applied magnetic field,

both amplitudes are the same Aª = A© = A. Hence, the return probability

is given by (coherent backscattering)

Pa→a = |Aª + A©|2 = 4|A|2, (1.8)
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hν

Metallic granules

(c)

}

∆
E = 0

Eext
(b)(a)

Figure 1.10: (a) Granules absorbs photons. (b) Vanishing electric field inside

granule. (c) Energy levels in the granule.

while classically, one could expect (incoherent backscattering)

P classical
a→a = |Aª|2 + |A©|2 = 2|A|2, (1.9)

without any interference. To that effect, the usual diffusion is suppressed

and the material less conducting. The application of a magnetic field breaks

time reversal symmetry and the conductance rises. For a field B ≈ Φ0/`
2,

the backscattering is incoherent and the classical Drude result holds.

1.2 Complex systems with random level dis-

tribution

1.2.1 Absorption of radiation by metallic granules

Even before the discovery of localization, people studied systems which today

may be called mesoscopic or nano-systems; an example is the polarizability

of small metallic granules. It is known for a long time that an ultra dispersed

media absorbs low-frequency radiation well, cf. Fig. 1.10(a). One may think

about ultra dispersed media in terms of small metallic granules which are

plugged into some nonconducting matrix. The reason for the absorption was

(and still is in some respect) a big puzzle. Gorkov and Eliashberg (well-

known for their work about superconductors) studied this system. Their

idea was that each electrons moves quasiclassically in a granule occupying

one of a set of discrete levels. The problem is that each level should be

accounted for and it is difficult (if not impossible) to predict the location of

the levels. They suggested to use the so-called Wigner-Dyson distribution

for the levels (a result of random matrix theory [6, 7]) which was already

successful in describing of the level distribution of big molecules, a nucleus,

9



1.2 Complex systems with random level distribution

or other complicated quantum objects where the spectrum is impossible to

calculate from first principles. In the random matrix theory, the probability

P (ε) to find two levels spaced by ε is given by

P (ε) ∝
( ε

∆

)β

, (1.10)

where ∆ is the mean level spacing [Fig. 1.10(c)] and the parameter β depends

on the universality class: β = 1 if both time-reversal symmetry and spin-

rotation symmetry are present, β = 2 if time reversal symmetry is broken,

β = 4 if time-reversal symmetry is present and spin-rotation symmetry is

absent [8]. Gorkov and Eliashberg predicted a large polarizability. It took

the physics community several years to realize that they made a simple mis-

take: screening was neglected, and each electron was assumed to respond to

the total applied electric field, cf. Fig. 1.10(b). However, if the granule is

polarized completely, the electric field in this granule will be (almost) zero.

Assuming that each electron would still feel the initial electric field, a huge

dipole moment was obtained. Even though the theory was wrong, the idea

to use random matrix theory was very stimulating. Evetov proved using his

supersymmetric method that the level statistics indeed follows Eq. (1.10). In

the middle of the 90s, Altshuler and Spivak reconsidered this problem. They

solved it purely quantum mechanically, i.e., they did not assume that the

electrons move quasiclassically and even the absorption process was taken

into account quantum mechanically. Their calculation matches the experi-

ment up to a reasonable accuracy.

1.2.2 Conductance fluctuations and Dorokhov distri-

bution function

Having introduced the random matrix theory with the corresponding dis-

tribution of energy levels in the last section, we now take a look at the

conductance and the conductance fluctuations of a diffusive quantum wire

from a different perspective. As will be shown later, the conductance G of

a quantum wire (waveguide) with Nch channels (or propagating modes) is

given by

G = Nch
2e2

h
〈T 〉, (1.11)

where G0 = e2/h is the conductance quantum and the factor of 2 originates

in the spin degeneracy. The transmission probability 〈T 〉 is averaged over all

10
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channels. The classically Drude conductance

G =
S

L
σ, (1.12)

depends on the length L and the cross-section S of the wire; the conductivity

σ is given by Kubo formula at zero frequency σ = e2νD [9, 10] with −e
the charge of an electron, ν the density of states at the Fermi energy, and

D = vF`/3 the diffusion constant. Substituting the density of state of a free

electron gas ν = mkF/π
2~2 into Eq. (1.12), we obtain

G =
S

L
e2
mkF

π2~2

vF`

3
=

2e2

h

Sk2
F

π2

π`

3L
. (1.13)

Note that number of channels in the wave-guide can be estimated quasiclas-

sically as Nchannels = Sk2
F/π

2 (i.e., one channel per area π2/k2
F = (λF/2)2).

Comparing Eq. (1.11) to Eq. (1.13), the average transmission probability is

given by

〈T 〉 =
π`

3L
, (1.14)

i.e., the average transmission probability is of the order of `/L, a quantity

which approaches zero for L → ∞. Does this mean that a typical trans-

mission probability is of the order `/L?. The answer is “no”. Typically

most channels are closed T ≈ 0. Only n = Nchannels `/L channels which

are completely open with T ≈ 1 carry most of the charge. The transmis-

sion probability T itself is distributed according to the Dorokhov distribution

function [11, 12]

P (T ) ∝ 1

T
√

1− T
, (1.15)

see Fig. 1.11. This result is general for a quasi one-dimensional diffusive wire

with the total length smaller then localization length L ¿ Lloc, where the

localization length can be estimated as Lloc ≈ Nchannel`, i.e., when the con-

ductance becomes of the order of the conductance quantum G0 = e2/h. The

switching between of the channels between on and off state is characterized

by the standard deviation [2]

δG ≈ e2

h
. (1.16)
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1.3 Nonlocality of quantum transport

0 0.2 0.4 0.6 0.8 1
0

100

P
(T

)

T

Figure 1.11: The Dorokhov P (T ) distribution is a bimodal distribution where

T is most likely either 0 or 1.

− + − +
E 6= 0 E 6= 0

S S
I 6= 0

E = 0(a) (b)

N

Figure 1.12: (a) A ballistic conductor, i.e., an adiabatic channel with

voltage drops at the entry and exit. (b) A Josephson junction, i.e., a

superconductor-normalconductor-superconductor interface. The current I

through the Josephson junction is proportional to sin(∆φ) where ∆φ is the

order-parameter phase- difference between the two superconductors, see [13].
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(b)(a) (c)

I(φ)I(φ)
I(φ)

Figure 1.13: Setup of the Aharonov-Bohm effect with the magnetic flux Φ

penetrating the ring: (a) With unavoidable back reflections at the second

fork, (b) Without back reflections at the second fork due to the reflectionless

four lead geometry. The picture (c) sketches the persistent current effect

which appears in the same loop geometry without bias.

1.3 Nonlocality of quantum transport

1.3.1 Coherent conductors

Another important feature of mesoscopic transport and quantum transport

in general is nonlocality. On the one hand, in classical transport theory,

Ohm’s law works and the local current density j is proportional to the local

electric field E

j(E) = σE (1.17)

with the proportionality constant given by the conductivity σ. In particu-

lar, there is no response (current) without a driver (electric field). On the

other hand, in quantum systems, it can well be that, even without electric

field, there is a finite current flowing. In a sense this is trivial as electrons

move ballistically; accelerating an electron at some point in the wire, it will

move on forever. For a ballistic wire, the voltage drops at the entrance and

the exit of the one dimensional wire where the electrons are accelerated, cf.

Fig. 1.12(a). Nonetheless, there is a finite current flowing in the conduc-

tor. Another example in condensed matter are Josephson junctions (weak

links) in superconductors, Fig. 1.12(b), where a current flows between two

superconductors without an applied driving field (a gradient of the order

parameter in this case).

1.3.2 Aharonov-Bohm effect

Another aspect of the nonlocality of quantum transport is the well-known

Aharonov-Bohm effect [14]. In this case, the nonlocality enters via the fact
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1.3 Nonlocality of quantum transport

that the current depends on the total flux threaded by the loop. If two

quantum wires enclose a solenoid producing a magnetic flux Φ, as shown in

Fig. 1.13, a vector potential A, but no driving forces (E = 0, H = 0) act at

the location of the wire. The net effect of the vector potential on the electron

wave-function is to accumulate phase φA on the path A and a different phase

φB for the path B with ∆φ = φA−φB = 2πΦ/Φ0 and Φ0 = hc/e the magnetic

flux quantum. In the simplest model, the current

I = |IA cosφA + IB cosφB| =
√
I2

A + I2
B + 2IAIB cos ∆φ (1.18)

is a superposition of the individual currents IA,B with the corresponding

phases φA,B. Figure 1.13 shows two possible experimental setups: in Fig. 1.13(a)

back reflections at the second fork cannot be avoided and therefore some spu-

rious resonances appear. This setup was realized experimentally [15, 16]. The

situation in Fig. 1.13(b) is easier to analyze as back reflection are suppressed

due to the four lead geometry in the second fork. Aharonov and Bohm were

studying this setup exactly due to the fact that it shows nonlocal physics, a

thing which is absent in classical mechanics.

1.3.3 Persistent current

Another nonlocal effect in mesoscopic physics is the persistent-current effect:

applying simply a magnetic field through a ring, current starts to flow, see

Fig. 1.13(c). Theoretically, this is expected, but in early experiments deco-

herence was strong enough to suppress this effect. In the case of a ballistic

quantum wire, theory predicts the current to be given by

I ≈ evF

L
, (1.19)

with L is circumference of the ring which matches with experiments. For the

diffusive case, the current is theoretically expected to be given by

I ≈ e

τD

, (1.20)

where τD = L2/vF` is the diffusive traveling time around the ring. Interest-

ingly, the value obtained experimentally [17] is much larger than the theoret-

ical prediction. Over ten years, this discrepancy was tried to resolve without

success. Recently, Schechter, Imry, et al. [18] have attempted to explain

the magnitude of the persistent current with attractive pairing-interacting

known from BCS superconductivity.
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Figure 1.14: (a) Interference of the electrons in the double-slit experiment.

(b) Mesoscopic which-path detector.

1.3.4 Which-path detector for electrons

A variation of the Aharonov-Bohm interferometer, closely related to the mea-

surement theory, is the which-path detector. The version in the double-slit

setup, is well-explained by Feynman in Ref. [13]: imagine a screen with two

holes through which photons propagate behind which another screen is placed

detecting the photons. If we assume that there is no decoherence and we do

not detect through which slit the photon passes, an interference pattern will

reveal itself on the detection screen. In contrast, if we detect through which

hole the photons have passed, the interference is gone, i.e., only a single

intensity maximum is observed. This Gedanken experiment, which is quite

important for the development of quantum mechanics, was first checked in

an experiment performed at Weizmann, Israel using the mesoscopic setup

of an Aharonov-Bohm interferometer, cf. Fig. 1.13 [19]. The experiment

was performed in a quasi two-dimensional electron gas which is realized in a

GaAs-GaAlAs heterostructure. Applying an additional electrostatic poten-

tial by top gates, certain areas of the gas can be depleted such that the motion

of the electrons can be further confined. To check the quantum coherence,

the Aharonov-Bohm effect was measured, corresponding to the interference

pattern in the double-slit experiment. In a next step, a quantum dot was

introduced in one arm to detect the electron passing by using a capacitive

coupling to a nearby quantum point contact; the current through the quan-

tum point contact depends on the fact whether the electron is located in the

dot or not. While performing the experiment, the Weizmann group observed

that if the charge detector in the dot is sensitive enough to be sure that the

electrons are detected then the interference pattern disappears.
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Figure 1.15: (a) Differential conductance as a function of the width of the

quantum point contact. The width can be tuned by changing the gate volt-

age. The conductance rises in steps of 2e2/h as more and more channels be-

come conducting. Breaking the spin-degeneracy by introducing some Zeeman

splitting half-plateaus are also observed (b) The quasiclassical approximation

works for opening angles αÀ 1/π2 ≈ 2.5◦.

1.4 Conductance quantization in a quantum

point contact

The conductance quantization in a quantum point contact (a constriction in a

quantum conductor) is another interesting subject which will be treated later

in this lecture in more detail. Here, we will present only the main ideas. The

effect of the quantization of the conductance in a quantum point contact

was first observed in 1988 [20, 21]. The quantization of the conductance

appears due to the fact that when opening the constriction more an more by

applying a gate voltage one channel after the other becomes transmitting.

As each channel which is fully transmitting carries the conductance 2G0 =

2e2/h (the factor of two is due to the spin degeneracy), we expect steps in

the conductance as a function of the width of the constriction [solid line in

Fig. 1.15(a)].

This reasoning remains valid as long as we can treat the conductor quasi-

classically, i.e., as long as the width of the sample acts as an effective potential

on the motion of the particle along the wire. Interestingly, in the experiments

the constriction was relatively short like in Fig. 1.15(b). Therefore, one might

expect the quasiclassical approximation to break down. Regardless, in the

experiments clear steps were observed. The puzzle was solved by Glazman,

Lesovik, et al. [22] shortly after the experiments where published: the quasi-

classical approximation is valid as long as the opening angle α is larger than
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Figure 1.16: Setup leading to Coulomb blockade physics. The charge trans-

port from the left to the right lead is blocked at certain values of the gate

voltage.

1/π2 and not larger than 1 as one might näıvely expect. When applying

additionally an in-plane magnetic field, such that the orbital motion is not

disturbed but a Zeeman splitting breaks the spin degeneracy, also steps of

e2/h were observed [dashed line in Fig. 1.15(a)] [21].

1.5 Coulomb blockade

Coulomb blockade was found in the 1980s by K.K. Likharev and co-workers.

The effect is due to interaction of electrons and cannot be explained in a sim-

ple one particle picture. The Coulomb blockade describes the disappearance

of current across a small object (quantum dot, granule, . . . ) with a large

capacitance C because of a large charging energy EC = e2/2C (−e is the

charge of the electron) on the island: the large charging energy suppresses

the adding or removing of charge carriers on the island blocking the charge

transport. The Coulomb blockade requires the charging energy EC to be

larger than other energy scales important for transport like the voltage bias

eV or the temperature T .

Applying additionally a bias U , the number of particles can be tuned.

Furthermore, it is possible to remove the Coulomb blockade electrostatically

and thereby creating a single electron transistor (SET). A transistor is a

device where the current across it depends sensitively on the applied gate

voltage U . The electrostatic energy of n electrons on the island biased with

17



1.6 Noise and the statistics of charge transport

Figure 1.17: Scattering of an electron at a potential barrier.

a voltage U is given by

EC(n, U) =
(ne)2

2C
− neU. (1.21)

It is possible to choose U = U∗ such that EC(n, U∗) = EC(n + 1, U∗), i.e.,

the electrostatic energy for n and n + 1 particles is the same. Solving the

equation for U∗, we obtain

U∗ =
e(2n+ 1)

2C
. (1.22)

At this value of the gate voltage, charges can flow. The sensitivity of the SET

is given by |δU | = e/2C. It depends on the discrete nature of the charge. For

vanishing charge quantization, e→ 0, the resistance would be just the sum of

the two tunneling resistances combined in series. Already, this simple theory

manages to explain the experimental results up to a reasonable accuracy.

1.6 Noise and the statistics of charge trans-

port

In any conductor current and voltage fluctuate, the so-called noise. A fun-

damental source of noise is thermal (or Nyquist-Johnson) noise determined

by the fluctuation-dissipation theorem. In nonequilibrium or in quantum

systems, there are more sources of noise, shot-noise, flicker-noise, . . . .

Consider the quantum mechanical problem of scattering of an electron

at a potential. In general, one part of the wave function is reflected (with

amplitude r) and another is transmitted (with amplitude t). Probability

conservation implies that the particle is either reflected (with probability

R = |r|2) or transmitted (with probability T = |t|2), i.e., R + T = 1. It

is important to note that quantum mechanics inevitably has a randomness

associated with it; a single electron is either transmitted or reflected and

quantum mechanics provides us with the probabilities for these events. Of

course, this randomness produces noise the so-called shot (or partitioning)

noise. Around 1989, Lesovik [23] and others [24–26] were able to derive the
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spectral density at small frequencies and temperatures

S(0) =

∫
dt 〈I(t)I(0)− 〈I〉2〉 = e

2e2

h
V T (1− T ) = e〈I〉(1− T ), (1.23)

of the current fluctuation induced by partitioning in a two-terminal conduc-

tor; here, V is the voltage applied across the conductor. The result was later

on generalized to the multichannel and multilead case [25]. In Eq. (1.23)

for shot noise, the charge quantum e appears explicitly, i.e., one can infer

the value of the charge by measuring S(0) and 〈I〉 knowing the transmission

probability T . This fact was used to observe the fractional charge e∗ = e/3

in the quantum Hall effect at filling 1/3 as well as the charge 2e in supercon-

ducting systems.

For a ballistic two-terminal conductor, it is even possible to calculate the

full probability distribution P (Qt) of the charge Qt = −ne transmitted dur-

ing a given time t. Levitov and Lesovik demonstrated that the distribution

(named full counting statistics) is given by

P (Qt) =

(
N

n

)
T n(1− T )N−n, (1.24)

a result which is valid for long times where N = eV t/h À 1 [27, 28]. The

distribution function is called binomial distribution. It can be obtained by a

simple Bernoulli (coin tossing) process, where N is the number of attempts

and T is the success probability. For dirty sample which are coherent, we

can use Eq. (1.24) and averaging the transmission probabilities using the

Dorokhov distribution Eq. (1.15) for the transmission eigenvalues.

1.7 Entanglement – Bell’s inequality

Soon after the invention of the quantum mechanic, Einstein, Podolsky, and

Rosen thought about a paradox which reveals strange correlations inherent

in quantum mechanics which cannot be explained in classical terms [30]. We

will present here Bohm’s version of the Einstein-Podolsky-Rosen paradox:

consider two particles (photons or electrons) with a spin degree of freedom

created in singlet state. If these particles fly away from each other (particle

1 to position L and particle 2 to position R, see Fig. 1.18), their finale state

is described by

|Ψ〉EPR =
1√
2
(|↑〉L|↓〉R − |↓〉L|↑〉R). (1.25)
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Figure 1.18: Bohm’s version of the Einstein-Podolsky-Rosen experiment.

Two particles are emitted from the source S in opposite directions resid-

ing in a singlet state. Later, their spin degree of freedom is detected along

an arbitrary direction in the two detectors DL and DR. The correlation pre-

dicted by quantum mechanics and measured experimentally [29] cannot be

explained by any local hidden-variable theory.

Performing a measurement on the first particle and measuring it at the lo-

cation L in state ↑ (↓), we know for sure that the second particle is in state

↓ (↑). This correlation by itself could be produced by a classical fluctuating

magnetic field which always acts in opposite direction along the measure-

ment basis at the two position of the particles. The crucial point is that

the quantum mechanical state described by Eq. (1.25) produces correlation

in any measurement basis (the singlet is rotationally invariant) whereas the

classical fluctuating magnetic field can reproduce the nonlocal correlations

only in one basis. Bell proved that the quantum mechanical correlation can-

not be obtained by any local hidden-variable theory. The state |Ψ〉EPR is an

entangled state. Entangled states are the reason for the increased power of

quantum computers with respect to their classical analogues. It is used, e.g.,

for cracking classical codes by factoring large prime number or generating

quantum codes which are secure.
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Chapter 2

Scattering problems in one

dimension

2.1 Plane waves – Scattering states

In one dimension, the Schrödinger equation is given by
[
− ~

2

2m

d2

dx2
+ V (x)

]
Ψ(x) = EΨ(x), (2.1)

with m the mass of the particle and V (x) the potential energy. For a free

particle with V (x) = 0 at energy E > 0, the solution can be written as

Ψ(x) = aLe
ikx+aRe

−ikx with the wave vector k =
√

2mE/~: this corresponds

to two plane waves, one (with the amplitude aL) incoming from the left

and the other (with the amplitude aR) incoming from the right. Adding

a potential E → E − V (x) with V (x) → 0 for |x| → ∞, the plane-wave

solutions e±ikx develop into scattering states of the form

ΨL(x) =

{
eikx + rLe

−ikx x→ −∞
tLe

ikx x→∞
(2.2)

for the right moving part and

ΨR(x) =

{
tRe
−ikx x→ −∞

e−ikx + rRe
ikx x→∞

(2.3)

for the left moving part; here, tL/R (rL/R) are transmission (reflection) ampli-

tudes of the scattering problem.
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2.1 Plane waves – Scattering states

2.1.1 Unitarity

Due to the fact that Eqs. (2.2) and (2.3) are stationary states, no charge

accumulation can happen and the current

I(x) = −i q~
2m

[Ψ(x)∗Ψ′(x)−Ψ′(x)∗Ψ(x)] (2.4)

has to be constant, I(x) = const. Assuming the system to be in state ΨL,

the condition for constant current implies

1− |rL|2 = |tL|2, (2.5)

where the right (left) hand side is the current for the asymptotic scattering

state for x→ ±∞. Analogously, the condition for the right scattering state

reads

1− |rR|2 = |tR|2. (2.6)

In general, the condition of constant current should also hold for arbitrary

linear superpositions Ψ(x) = aLΨL(x) + aRΨR(x) of the two scattering eigen-

states. Setting the current on the asymptotic left side x→ −∞ equal to the

current on the asymptotic right side x→∞ yields

− a∗LaR r
∗
LtR − a∗RaL t

∗
RrL = a∗LaR t

∗
LrR + a∗RaL r

∗
RtL, (2.7)

where we already used Eqs. (2.5) and (2.6) to get rid of the terms proportional

to |aL/R|2. Equation (2.7) for all aL/R implies

r∗LtR = −t∗LrR. (2.8)

This condition leads to the fact that T = |tL|2 = |tR|2, i.e., the transmission

probability T is the same for both right and left moving scattering states; even

more, for a time-reversal invariant Schrödinger equation of the form (2.1)

without a vector potential, it can be shown that the transmission amplitudes

themselves are equal,

tL = tR. (2.9)

On the other hand, for a symmetric potential with V (x) = V (−x) the re-

flection amplitudes agree, rL = rR. In general, all the amplitudes can be

collected in a scattering matrix

S =

(
rL tR
tL rR

)
, (2.10)

which connects the ingoing to the outgoing parts of the scattering states at

energy E. The conditions Eq. (2.5) to (2.8) simply mean that S is unitary.
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−→ e
ikx

←− rLe
−ikx

−→ tLe
ikx

U(x)

Figure 2.1: Quasiclassical scattering problem.

2.1.2 Current eigenstates

As the current is independent on the position x, it is also possible to find

eigenstates of the current operator at a given energy E. Introducing the

shorthand notation

〈m|Ĩ|n〉 =
1

2ik
[Ψm(x)∗Ψ′n(x)−Ψ′m(x)∗Ψn(x)] (2.11)

for the dimensionless current Ĩ = (m/~k)I, the task is to diagonalize the

Hermitian matrix

〈L,R|Ĩ|L,R〉 =

(
T t∗LrR

r∗RtL −T
)
, (2.12)

which is Ĩ expressed in the basis ΨL/R. The eigenvalues, given by

Ĩ0 = ±
√
T (2.13)

belong to the eigenstates Ψ±; the Ψ±(x) are the normalized states with the

maximal (minimal) currents possible.

2.1.3 Quasiclassical Approximation

The quasiclassical or WKB (Wentzel-Kramers-Brillouin) method is a way to

solve the Schrödinger Eq. (2.1) for slowly varying potentials V (x) = U(x), cf.

Fig. 2.1; for one dimensional problems it assumes a particularly simple form.

To derive it, we plug the Ansatz Ψ(x) = A(x) exp[iS(x)/~] into Eq. (2.1),

and obtain (for the real and imaginary part)

S ′(x)2 − 2m[E − U(x)] = ~2A
′′(x)
A(x)

and [A(x)2S ′(x)]′ = 0. (2.14)

The latter equation is easily integrated, A(x) = const/
√
S ′(x). Inserting this

solution into the former equation, yields

S ′(x)2 − 2m[E − U(x)] = ~2

[
3

4

(
S ′′(x)
S ′(x)

)2

− 1

2

(
S ′′′(x)
S ′(x)

)]
(2.15)
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2.1 Plane waves – Scattering states

To obtain the WKB approximation, we expand S(x) in ~2,

S = S0 + ~2S1 + ~4S2 + . . . , (2.16)

and insert this expansion into Eq. (2.15). To 0th order, we obtain

S ′0(x)
2 = 2m[E − U(x)] → S0(x)− S0(x0) = ±

∫ x

x0

dx p(x) (2.17)

where the local momentum is given by p(x) =
√

2m[E − U(x)]. Calculating

the next order, one can check that the quasiclassical approximation is valid

whenever |∂x[~/p(x)]| ¿ 1, i.e., the wave length does not change considerably

on the length of one period. To sum up, in quasiclassical approximation the

wave function of a particle at energy E is given by

Ψ(x) =
C√
|p(x)|e

i
R xdx p(x)/~ (2.18)

with C an undetermined constant fixed by the asymptotic (or normalization)

condition.

2.1.4 Accounting for a vector potential

In classical mechanics, there is no effect of a magnetic field on a particle whose

motion is restricted in one dimension. Similarly, in quantum mechanics, a

time-independent vector potential A(x) in the Schrödinger equation

{
− 1

2m

[
−i~ d

dx
− q

c
A(x)

]2

+ V (x)

}
Ψ(x) = EΨ(x) (2.19)

can be gauged away; here, q (m) is the charge (mass) of the particle and c

is the speed of light. Let Ψ(0)(x) be a solution of Eq. (2.19) with A(x) = 0,

then

Ψ(x) = exp

[
i
q

~c

∫ x

dx′A(x′)
]
Ψ(0)(x) (2.20)

is a solution with A(x) 6= 0. Therefore, the application of a magnetic field

yields only an additional phase. The transmission and reflection probabilities

remain unchanged.
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2.1.5 Linear spectrum and scalar potential

The one dimensional Fermi sea has the particular property that low-energy

excitations moving to the right follow the dispersion E = vFp with vF the

Fermi velocity. With certain restrictions, this approximation on the spectrum

is valid. Assuming a linear spectrum, we can write down the time-dependent

Schrödinger equation

[i~
∂

∂t
− q ϕ(x, t)]Ψ(x, t) = vF[−i~ ∂

∂x
− q

c
A(x, t)]Ψ(x, t) (2.21)

for a particle in a dynamical electric- (ϕ) and magnetic- (A) potential. Know-

ing the solution Ψ(0)(x, t) = exp[ik(x−vFt)] for ϕ = A = 0, the wave function

Ψ(x, t) = exp

{
iq

~c

∫ x

x−vFt

dx′
[
A

(
x′, t− x− x′

vF

)
− c

vF

ϕ
(
x′, t− x− x′

vF

)]}

×Ψ(0)(x, t) (2.22)

is a solution of Eq. (2.21), i.e., all effects of the vector- and scalar potential

can be incorporated in a time-dependent phase; there is no backscattering at

a potential for arbitrary fields.

2.2 Wave packets

Both traveling and spreading of a wave packets are usually exemplified for a

Gaussian packet as this is one of the only cases where all the integrals can be

calculated exactly. Here, we want to present some general result which are

valid for a wave packet with arbitrary shape. The motion of a wave packet is

given by Ehrenfest theorem which implies that for average 〈x〉 of the position

operator x the quantum version of Newton equation

m
d2〈x〉
dt2

= −
〈dU(x)

dx

〉
. (2.23)

is valid [1]. If we consider the time evolution of a wave packet, a wave function

Ψ which is nonzero only in a small region around the average value 〈x〉. The

average value of x changes in accordance with Eq. (2.23). Assuming that the

shape of the packet does not change in time, the motion of the packet could

be equalized with the motion of a classical particle and quantum mechanics

would map trivially on classical mechanics. In general, this kind of reasoning
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2.2 Wave packets

is wrong. Firstly, because the wave packet broadens and, secondly, in order

that the motion of the center of the wave packet coincides with the motion

of the classical particle, the following condition

〈dU(x)

dx

〉
=
dU(〈x〉)
d〈x〉 , (2.24)

should be satisfied.

Let us now consider the motion and broadening of a wave packet in details.

The width of the packet is characterized by the variance 〈(∆x)2〉 = 〈x2〉−〈x〉2
with ∆x = x− 〈x〉. Expanding the right hand side of Eq. (2.23) around 〈x〉
for a small packet size 〈(∆x)2〉 up to second order, we obtain

m
d2〈x〉
dt2

= −dU(〈x〉)
d〈x〉 − 1

2

d3U(〈x〉)
d〈x〉3 〈(∆x)2〉 − . . . (2.25)

If the potential is changing slowly and the size of the packet is small,

∣∣∣∣
d3U(〈x〉)
d〈x〉3 〈(∆x)2〉

∣∣∣∣ ¿
∣∣∣∣
dU(〈x〉)
d〈x〉

∣∣∣∣ (2.26)

we can retain only the first term on the right hand side of Eq. (2.25). The

equation of motion for the average 〈x〉 is then equal to the equation of motion

of a classical particle,

m
d2〈x〉
dt2

= −dU(〈x〉)
d〈x〉 ; (2.27)

for example, in free space with U(x) = 0, the center of mass of the package

moves inertially with a velocity 〈v〉 which does not change with time, that is

〈x〉t = 〈x〉0 + 〈v〉t. (2.28)

Next, we are interested in the time evolution of the spreading 〈(∆x)2〉t: the

Heisenberg equation of motion for the operator (∆x)2 reads

d(∆x)2

dt
=
∂(∆x)2

∂t
+
i

~
[H, (∆x)2] = −d〈x〉

2

dt
+
i

~
[H, x2]. (2.29)

where [A,B] = AB −BA is the commutator. Using the free particle Hamil-

tonian H = p2/2m with [p, x] = i~ to evaluate the commutator

[H, x2] =
1

2m
[p2, x2] =

1

2m
(p2x2 − x2p2) =

~
im

(xp+ px), (2.30)
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Scattering problems in one dimension

we obtain for first derivative with respect to time

d(∆x)2

dt
=
xp+ px

m
− d〈x〉2

dt
=
xp+ px

m
− 2〈v〉〈x〉. (2.31)

Writing down the Heisenberg evolution for the operator in Eq. (2.31)

d2(∆x)2

dt2
=

∂

∂t

(
d(∆x)2

dt

)
+
i

~

[
H,

d(∆x)2

dt

]
(2.32)

= −d
2〈x〉2
dt2

+
i

~

[
H,

xp+ px

m

]
.

gives the second time derivative of the variance (∆x)2. Inserting the com-

mutator
[
H,

xp+ px

m

]
=

1

2m2
[p2(xp+ px)− (xp+ px)p2] =

2~p2

im2
, (2.33)

we obtain
d2(∆x)2

dt2
=

2p2

m2
− d2〈x〉2

dt2
=

2p2

m2
− 2〈v〉2. (2.34)

Now, as p2 commutes with H, all higher order derivatives with respect to

time vanish,
dn(∆x)2

dtn
= 0 (2.35)

for all n > 2. The operator for the width of the wave packet evolves like

(∆x)2
t = (∆x)2

0 +

(
xp+ px

m
− 2〈v〉〈x〉

)
t+

(
p2

m2
− 〈v〉2

)
t2. (2.36)

Taking the average yields

〈(∆x)2〉t = 〈(∆x)2〉0 +

(〈xp〉+ 〈px〉
m

− 2〈v〉〈x〉
)
t+

(〈p2〉
m2

−〈v〉2
)
t2. (2.37)

As 〈(∆x)2〉t must be positive for all times, the coefficient of the linear term

in t cannot be large; for typical initial wave packets, the term even vanishes

and the expression simplifies to

〈∆x2〉t = 〈∆x2〉0 + 〈(∆v)2〉t2, (2.38)

with the velocity dispersion 〈(∆v)2〉 = 〈v2〉 − 〈v〉2. Note that there is a

part of the time evolution t < 0 where the wave packet shrinks and a part
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2.3 Scattering potentials

−→ e
ikx

←− rLe
−ikx

λ

impurity

−→ tLe
ikx

Figure 2.2: Delta-scattering potential. A potential can be approximated by

a Dirac delta function when its range is smaller than the wavelength λ of the

incident particle.

t > 0 where the wave packet expands. The only reason why one usually

talks about the fact that wave packets smear out in time is the problem of

preparing wave packets which contract. As stated before, quite generally,

the initial condition corresponds to t = 0 and the wave packet will expand

in time. The smearing of the wave packet coincides with smearing of a set

of classical particles given an initial distribution with the same 〈(∆x)2〉0 and

〈(∆v)2〉.

2.3 Scattering potentials

2.3.1 Delta scatterer – Impurity potential

To calculate the transmission amplitude through a delta scattering potential

of the form V (x) = V0δ(x) with δ(x) the Dirac delta function, the Schrödinger

equation [
− ~

2

2m

d2

dx2
+ V0δ(x)

]
Ψ(x) = EΨ(x) (2.39)

has to be solved. Away from x = 0, the solutions are of the form e±ikx with

k =
√

2mE/~. Thus, we make the Ansatz

Ψ(x) =

{
eikx + rLe

−ikx x < 0

tLe
ikx 0 < x

, (2.40)

with tL (rL) the transmission (reflection) amplitude, cf. Fig. 2.2. The Schrödinger

equation (2.39) implies the continuity of the solution Ψ(0−) = Ψ(0+), i.e.,

1 + rL = tL. (2.41)
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Scattering problems in one dimension

−→ C+eκx

←− C
−
e
−κx

−→ eikx

←− rLe
−ikx

−→ tLe
ikx

x = 0 x = L

U0

Figure 2.3: Tunneling under a rectangular barrier of length L and height U0.

Different from the situation in Sec. 2.3.2, the first derivative of Ψ is not

continuous due to the fact that the potential has a delta-function singularity;

integrating Eq. (2.39) from 0− to 0+ yields the condition

− ~2

2m

[
Ψ′(0+)−Ψ′(0−)

]
+ V0Ψ(0) = 0, (2.42)

which implies
~2

2m
ik(tL − 1 + rL) + V0tL = 0. (2.43)

Together with Eq. (2.41), the transmission amplitude of the impurity

tL =
ik

ik +mV0/~2
. (2.44)

can be obtained. The transmission amplitude of the delta scatterer ap-

proaches zero for k → 0; this a generic feature of the transmission for all

scattering potentials.

2.3.2 Rectangular barrier

To describe the tunneling of a particle with energy E under a rectangular

potential barrier of length L and height U0, Fig. 2.3, we make the piecewise

Ansatz

Ψ(x) =





eikx + rLe
−ikx x < 0

C+e
κx + C−e−κx 0 < x < L

tLe
ikx L < x

(2.45)

for the scattering wave function of the particle; here, k =
√

2mE/~ and

κ =
√

2m(U0 − E)/~ are wave vectors in the appropriate regions. To find

the solution of the tunneling problem, we have to match the wave functions

and their derivatives at at x = 0

Ψ(0−) = Ψ(0+) −→ 1 + rL = C+ + C−, (2.46)

Ψ′(x)|x=0− = Ψ′(x)|x=0+ −→ ik(1− rL) = κ(C+ − C−), (2.47)
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2.3 Scattering potentials

and at x = L

Ψ(L−) = Ψ(L+) −→ C+e
κL + C−e−κL = tLe

ikL (2.48)

Ψ′(x)|x=L− = Ψ′(x)|x=L+ −→ κ(C+e
κL − C−e−κL) = iktLe

ikL. (2.49)

By eliminating r and t from systems of equations (2.46) to (2.49), we obtain

for coefficients C+ and C− in between,

C± =
2ik(κ ± ik)e∓κL

(κ + ik)2e−κL − (κ − ik)2eκL
. (2.50)

Inserting into C± into Eq. (2.49), we obtain the transmission amplitude

tL =
4ikκ

(κ + ik)2e−κL − (κ − ik)2eκL
e−ikL. (2.51)

For long barriers, κLÀ 1, we can neglect the term proportional to e−κL in

denominator of (2.51) and we obtain

tL = − 4ikκ
(κ − ik)2

e−(κ+ik)L. (2.52)

The transparency (transmission probability) T = |tL|2 of the barrier is in this

limit given by

T =
16k2κ2

(k2 + κ2)2
e−2κL. (2.53)

Note that a quasiclassical analysis would only yield e−2κL; the prefactor

16k2κ2/(k2 + κ2)2 is due to sharp edges of the barrier which violate the

quasiclassical assumption.

Hartman effect

The Hartman effect describes the fact that the time a particle needs for

tunneling through a long tunneling barrier does not depend on the length of

the constriction [2]. Consider the propagation of a wave packet

Ψ(x, t) =

∫
dk

2π
f(k)eikx−i~k2t/2m, (2.54)

where f(k) is a function localized around k0 and normalized according to∫
(dk/2π)|f(k)|2 = 1. The wave packet can be approximately written as

Ψ(x, t) ≈
∫
dk

2π
f(k)eikx−iv0(k−k0)t−i~k2

0t/2m (2.55)

34



Scattering problems in one dimension

r1

t1t2

0 L
x

t1, r1 t2, r2

t1r2e
ikLr1e

ikLt2

· · ·

· · ·

t1e
ikLr2e

ikLt1

Figure 2.4: The double barrier (two potentials in series) can be thought of

as an analog to the Fabry-Pérot interferometer in optics. The interference

leads to resonances whenever kL ≈ πZ.

with v0 = ~k0/m. Thus

Ψ(x, t) ≈ Ψ(x− v0t, 0)ei~k2
0t/2m (2.56)

After the scattering (t→∞) at a potential with the transmission probabili-

ties tL, the transmitted part of the wave packet will have the form

Ψ(x, t) ≈
∫
dk

2π
f(k)tLe

ikx−i~k2t/2m (2.57)

Inserting the expression (2.52) for the rectangular barrier

tL ≈ −4ike−(κ+ik)L

κ
(2.58)

in the limit (k ¿ κ, κLÀ 1), we may write

Ψ(x, t) ≈ −4ike−κL

κ
Ψ(x− vt− L, 0)ei~k2

0t/2m, (2.59)

i.e., the particle tunneled through the barrier with length L without using any

time. This effect is also tagged paradox, as traveling with a speed larger than

light seems to be possible. The solution of this paradox can be seen due to the

fact that still no fast information transfer is possible, as the probability that

the particle actually tunnels through the barrier is exponentially suppressed.

2.3.3 Double barrier – Fabry-Pérot

The double barrier structure consists of two scattering potential in series.

Because of the coherent nature of the transport, interference appears which
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2.3 Scattering potentials

lead to transmission resonances (quasibound states). The transmission char-

acteristics could be calculated using the formalism of last Section, i.e., wave

function matching. Here, we want to employ a different approach and sum

up the amplitudes of the different paths the particle can take. The setup is

sketched in Fig. 2.4. The transmission amplitude is given by the series

tL = t1t2 + t1(r2e
ikLr1e

ikL)t2 + t1(r2e
ikLr1e

ikL)2t2 + . . . (2.60)

where the first term corresponds to a path traversing both barriers without

being reflected, the second term corresponds to a path involving an additional

round trip (bracket), and so on. Summing up the geometric series yields the

transmission amplitude

tL =
t1t2

1− r1r2e2ikL
. (2.61)

Note that tR = tL, as tR can be obtained from Eq. 2.61 by swapping t1 and t2
and tL is symmetric in t1 and t2. An interesting feature of the transmission

amplitude is the fact that for a symmetric barrier with t1 = t2 the resonances

at kL ≈ πZ are perfect with tL = 1; that is, even though the individual

barriers are not perfectly transmitting, the whole device is. This effect is

due to interference and serves as a clear feature of coherence. As soon as the

coherence is lost, we expect T ≈ T1T2 which can be much less than unity.

This effect is used in the experimental for checking of the coherence. Note

that when T < 1, one can not decide, if the system coherent or not. The

case T = 1 is the indication of coherence. Out of resonance

tL =
t1t2

1 + |r1r2| . (2.62)

At |t1,2| ¿ 1 it gives T ≈ T1T2/4 so we see the effect of the destructive

coherence in compare to incoherent case T ≈ T1T2.

In the same way, we can sum up the paths waves for the left reflection

amplitude

rL = e−ikLr1 + e−ikLt1e
ikLr2e

ikLt1 + e−ikLt1e
ikL(r2e

ikLr1e
ikL)r2e

ikLt1 + . . .

(2.63)

which yields

rL = r1e
−ikL +

t21r2e
ikL

1− r1r2e2ikL
=
r1e
−ikL + r2e

ikL(t21 − r2
1)

1− r1r2e2ikL
. (2.64)
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L1 L2

Dot 1 Dot 2

t1, r1 t2, r2 t3, r3

Figure 2.5: A double barrier can also be thought of as a quantum dot. Having

three barriers in series models to a double dot system.

Using the unitarity relation t∗1r1 = −t1r∗1 to rewrite the expression

t21 − r2
1 = −t1t∗1

r1
r∗1
− r2

1 = −r1
r∗1

(t1t
∗
1r1 + r1r

∗
1) = −r1

r∗1
.

Inserting the result into Eq. (2.64), we obtain the reflection amplitude

rL =
1

r∗1

R1e
−ikL − r1r2e

ikL

1− r1r2e2ikL
(2.65)

The right reflection amplitude can be obtained from (2.65) by the replace-

ment 1 ↔ 2

rR =
1

r∗2

R2e
−ikL − r1r2e

ikL

1− r1r2e2ikL
=

1

r∗2

R2e
−ikL − r1r2e

ikL

1− r1r2e2ikL
. (2.66)

2.3.4 Double dot

A double dot system can be modeled by two resonances in series, cf. Fig. 2.5.

This can be done in a similar fashion as in the last section. The idea is to

use the result for the transmission t̃23 and reflection r̃23,L amplitudes for 2nd

and 3rd scatterers together

t̃23 =
t2t3

1− r2r3e2ikL2
, r̃23,L =

1

r∗2

R2 − r2r3e
2ikL2

1− r2r3e2ikL2
(2.67)

as a single object and insert them into the formula Eq. (2.61) for the double

barrier, replacing t2 and r2, i.e.,

tL =
t1t̃23

1− r1r̃23,LeikL2e2ikL1
, (2.68)
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2.4 Lippmann-Schwinger equation

where additional factor eikL2 in the denominator corresponds to the shift of

the center of the effective barrier composed by 2nd and 3rd barriers. Note

that we do not need for r̃23,R. Performing the substitution, we see that the

transmission amplitude of the double dot tL is given by

tL =
t1t2t3

1− r1r2e2ikL1 − r2r3e2ikL2 + r1r3(r2/r∗2)e2ik(L1+L2)
. (2.69)

2.4 Lippmann-Schwinger equation

In general, solving the scattering problem involves finding of a solution to

the Schrödinger equation

[
− ~

2

2m
∆ + U(x) + V (x)

]
ψ(x) = Eψ(x) (2.70)

at the energy E in a potential U(x)+V (x) with a given asymptotic form of the

extended (nonnormalizable) wave function as the boundary condition. We

take U(x) to be a potential where we can solve the scattering problem exactly

and think of V (x) as a perturbation. In general, we assume that the potential

U(x) + V (x) goes to zero for |x| → ∞ rapidly enough such that we can

define an asymptotic wave vector k =
√

2mE/~. The differential equation

Eq. (2.70) with the appropriate boundary conditions can be formulated as an

integral equation, called Lippmann-Schwinger equation. Rewriting Eq. (2.70)

as

(E −H0)ψ(x) = V (x)ψ(x), (2.71)

with H0 = −~2∆/2m + U(x), we see that V (x)ψ(x) can be treated as a

inhomogeneity to the homogeneous Schrödinger equation (E−H0)Ψ(x) = 0.

Solving the fundamental equation

(E −H0)G(x, x′) = δ(x− x′) (2.72)

for the outgoing Green’s function G(x, x′) with G(x, x′) ∼ eik|x| for |x| → ∞,

we can write the solution as

ψL(x) = ΨL(x) +

∫
dx′G(x, x′)V (x′)ψL(x

′), (2.73)

where ΨL(x) is a scattering state (incoming from the left) of the unperturbed

Schrödinger equation with V (x) = 0. For 1D systems, the Green’s function
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(c)(b)(a)

Figure 2.6: (a) Quantum point contact which is treated as unperturbed

potential U(x) for the Lippmann-Schwinger problem. (b) Quantum point

contact with an additional delta scatterer. (c) Quantum point contact with

a quantum dot (resonance).

is given by

G(x, x′) =
2m

~2w

{
ΨL(x)ΨR(x′) x > x′

ΨR(x)ΨL(x
′) x < x′

, (2.74)

and the Wronskian is given by

w = Ψ′L(x)ΨR(x)−ΨL(x)Ψ
′
R(x) = 2iktL, (2.75)

independent on x; the second equality w = 2iktL was obtained using the

asymptotic form of the scattering states, Eqs. (2.2) and (2.3). In the free-

particle case with U(x) = 0, the wave functions are given by ΨL(R)(x) = e±ikx

and G(x, x′) = meik|x−x′|/i~2k.

2.4.1 Impurity on a rectangular barrier

As an example, we study the situation in Fig. 2.6, i.e., a delta-scattering

potential (impurity) at position x0 on top of a constriction, cf. Fig. 2.6(b),

i.e., long rectangular barrier of the form as in Fig. 2.3. Let V = V0δ(x− x0)

and U(x) be the potential of the constriction, see Fig. 2.6(a): the Lippmann-

Schwinger equation (2.73) in this case reads as

ψL(x) = ΨL(x) +G(x, x0)V0ψL(x0). (2.76)

which can be solved for ψL(x0) = ΨL(x0)/[1 − V0G(x0, x0)]. Thereby, the

scattering wave function assumes the form

ψL(x) = ΨL(x) +
G(x, x0)V0ΨL(x0)

1− V0G(x0, x0)
. (2.77)
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2.4 Lippmann-Schwinger equation

with ΨL(x) as in Eq. (2.45) and ΨR(x) = e−ikLΨL(L − x). Inserting (2.74)

and restricting to x > x0, we obtain

ψL(x) =

[
1 +

V0ΨR(x0)ΨL(x0)

~2w/2m− V0ΨR(x0)ΨL(x0)

]
ΨL(x)

=
1

1− (2mV0/~2w)ΨR(x0)ΨL(x0)
ΨL(x) (2.78)

Knowing the asymptotics of the wave function for the rectangular barrier,

ΨL(x→∞) ∼ tLe
ikx, Eqs. (2.45), and defining the transmission amplitude t̃

as ψ(x→∞)L ∼ t̃Le
ikx, we obtain a result for the transmission amplitude

t̃L =
tL

1 + i(mV0/~2ktL)ΨR(x0)ΨL(x0)
, (2.79)

where we set w = 2iktL and tL is given by Eq. (2.51). To calculate t̃L explicitly,

we need to know tL and ΨR(x0)ΨL(x0). Starting from Eq. (2.52), the following

results can be obtained easily in the limit κLÀ 1 and κ À k:

tL = −4ik

κ
e−(κ+ik)L,

and

ΨL(x0) = −2ik

κ
[e−κx0 + e−κ(2L−x0)]

Inserting these results into Eq. (2.79) and using the fact that ΨR(x0) =

e−ikLΨL(L− x0), we obtain

t̃L =
tL

1 + (mV0/~2κ)(1 + e−2κx0 + e−2κ(L−x0))
. (2.80)

The transmission shows almost no dependence on the position of the reso-

nance whenever x0 in neither close to 0 nor L.

2.4.2 Rectangular potential and two impurities

The transmission through two impurities, cf. Fig. 2.6(c) can be calculated

similar to the method in the last section. The potential assumes the form

V (x) = V1δ(x− x1) + V2δ(x− x2). (2.81)

The Lippmann-Schwinger equation (2.73) simplifies to

ψL(x) = ΨL(x) +G(x, x1)V1ψL(x1) +G(x, x2)V2ψL(x2). (2.82)
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Which we will solve approximately by performing perturbation theory up to

2nd order (in V1 and V2). The zero order solution is given by the solution

involving only the rectangular barrier,

ψ
(0)
L (x) = ΨL(x). (2.83)

To first order, we plug (2.83) into the right hand side of the Lippmann-

Schwinger equation (2.82), which yields

ψ
(1)
L (x) = G(x, x1)V1ΨL(x1) +G(x, x2)V2ΨL(x2). (2.84)

Going to second order, we obtain the solution, x > L,

ψ
(2)
L (x) = ΨL(x)

(
V1

2mΨR(x1)

~2w
ψ

(1)
L (x1) + V2

2mΨR(x2)

~2w
ψ

(1)
L (x2)

)
, (2.85)

for the particle incoming from the left.
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Chapter 3

Waveguides – Multi-channel

scattering problems

Quasi one-dimensional systems are built by constricting the motions of the

particles in the lateral dimensions (y, z) such that only the motion along

x is allowed, cf. Fig. 3.1. The plane wave of last chapter are then replace

by modes, i.e., plane waves with a lateral structure of a bound state. A

waveguide can in general carry many modes. For low temperatures and

strong constriction, only the lowest mode becomes important and we enter

the regime of pure 1D transport discussed in the last section. In general,

more than one mode needs to be taken into account.

3.1 Mode quantization

We will show in a simple example of a translation-invariant system (along

x) how this mode quantization comes about. The problem to solve is the

x

z

y

Ψ(x, y, z)

Figure 3.1: A waveguide, elongated along x, with an adiabatically changing

shape.
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3.2 Scattering problems in waveguides

stationary Schrödinger equation

[
− ~

2

2m
∆ + V (x, y, z)

]
Ψ(x, y, z) = EΨ(x, y, z), (3.1)

where, at first, the potential V (x, y, z) = V (y, z) and the boundary conditions

are translation-invariant. Therefore, we can make the Ansatz Ψ(x, y, z) =

χ(y, z)eikx. Plugging this Ansatz in Eq. (3.1), the equation separates and the

eigenvalue equation for the transversal part reads

[
− ~

2

2m
(∂2

y + ∂2
z ) + V (y, z)

]
χn(y, z) = Enχn(y, z) (3.2)

with n the mode index and χn(y, z) the corresponding wave function. The

eigenenergies En (the quantization energy) can be interpreted as the energy

which is needed to generate the transversal structure. The transversal modes

χn(y, z) form in general a complete

∑
n

χn(y, z)χ∗n(y′, z′) = δ(y − y′)δ(z − z′) (3.3)

and orthonormal ∫
dydxχ∗m(y, z)χn(y, z) = δmn (3.4)

set. Therefore, the general solution of Eq. (3.1) can be expanded in this set

and is given by

Ψ(x, y, z) =
∑

n

cnχn(y, z)eiknx, (3.5)

where kn =
√

2m(E − En)/~ is the wave vector of the n-th mode and cn
are constants. Depending on the energy E, the modes with En > E do not

propagate as the energy supplied is not enough for the transversal structure.

These modes become evanescent modes which decay according to e−κnx with

κn =
√

2m(En − E)/~.

3.2 Scattering problems in waveguides

We consider a system which for x→ ±∞ is given by a regular (translational

invariant) waveguide; the asymptotic states are given by Eq. (3.5). In the

case there is an additional potential (or a change in boundary condition, as for

example a constriction) around some position x ≈ xs along the waveguide, we
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Waveguides – Multi-channel scattering problems

n = 2

n = 3

n = 1

n = 4

n = N

S
nn0

Figure 3.2: Multilead setup.

can formulate the problem as a scattering problem. Assuming an incoming

state of the form

Ψin(x, y, z) = χn0(y, z)e
ikn0x, (3.6)

the outgoing wave will have the general form

Ψout(x, y, z) =
∑

n

Snn0

√
kn0

|kn| χn(y, z)eiknx (3.7)

where the sum over n runs of both the left-moving, transmitted states (n > 0,

kn) and the right-moving, reflected states (n < 0, kn = −k|n|). The additional

factor
√
kn0/|kn| has been introduced to render the scattering matrix Snn0

unitary; they normalize the asymptotic states χn(y, z)eiknx/
√
kn to carry

unit current. In a similar fashion (replacing modes by leads) it is possible to

discuss the multilead setup Fig. 3.2.

3.3 Adiabatic changing waveguides

In general, the boundary condition and the potential in Eq. (3.1) are not

fully translational invariant. Nevertheless, in many cases the changes in the

boundary condition or in the potential are slow compared to the length given

by the wave length. In these cases, one can employ the so-called adiabatic

approximation: we separate the motion in a fast (transversal) and a slow

(longitudinal) part. The fast part is the eigenvalue equation
[
− ~

2

2m
(∂2

y + ∂2
z ) + V (x, y, z)

]
χn(x, y, z) = En(x)χn(x, y, z); (3.8)

for each cross section, cf. Fig. 3.1; the transversal quantization energy En(x)

becomes (slightly) x dependent. Assuming adiabaticity, we make the Ansatz

Ψ(x, y, z) = cnχn(x, y, z)φn(x) (3.9)
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3.3 Adiabatic changing waveguides

where φn(x) solves the equation

[
− ~

2

2m

d2

dx2
+ En(x)

]
φn(x) = Eφn(x) (3.10)

for the motion along the wire; note, that the eigenenergies En(x) for the

transversal (fast) mode serve as an effective potential for the motion along x

(slow). Equation (3.9) serves as an approximate solution to the Schrödinger

equation as long as we can neglect mode mixing.

As an example, we study the case of a two-dimensional electron gas

(2DEG) (extended into x, y plane) which is furthermore confined in the

y direction with the help of some gate voltages. In order to have a clear

distinction between propagating and evanescent modes, we model the con-

finement via the boundary conditions Ψ[x,±d(x)/2] = 0, i.e., the electrons

are only allowed in the strip of width d(x) around the x axis. Assuming a

slow change of d(x), we obtain a transversal mode of the form

χn(x, y) =

√
2

d(x)
sin

[
nπ

y + d(x)/2

d(x)

]
(3.11)

with En(x) = ~2π2n2/2md(x)2, n ≥ 1. The last (1D) degree of freedom

φn(x) obeys the equation (3.10) i.e., it moves in an effective potential En(x).

To model a quantum point contact, Fig. 1.15(b), we set

d(x) =
W

L

√
x2 + L2 (3.12)

with W (L) the width (length) of the constriction and α = 2 arctan(W/2L)

the opening angle. The effective potential

En(x) =
~2π2L2n2

2mW 2(x2 + L2)
≈ En(0)− m

2
Ω2

nx
2 (3.13)

is approximately quadratic close to the top of the barrier (x = 0) with the

expansion coefficients

En(0) =
~2π2n2

2mW 2
and Ωn =

~πn
mWL

.

The tunneling problem in a inverted parabola can be solved exactly [1]. The

transmission probability in (3.13) is given by the Kemble formula

Tn(E) =

[
e2π[En(0)−E]/~Ωn + 1

]−1

, (3.14)
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x

(x0, y0)

n = 1
n = 2

d

(a)

(b) W

}

2e2/h

G

Figure 3.3: (a) A strip waveguide with an impurity scatterer at (x0, y0). (b)

The transmission (conductance) of a quantum point contact showing a dip

close to the opening of the second channel; this is due to resonant reflection

by a quasibound state in the impurity potential.

a smeared step function which goes from 0 at E < En(0) to 1 for E > En(0)

where the crossover happens in a range of the size of ~Ωn/2π. In order to

observe steps in the conductance as a function of W , as depicted in Fig. 1.15,

the width of the Kemble form ~Ωn/2π should be much smaller than the

separation between two steps En+1(0)− En(0) ≈ ~2π2n/mW 2, i.e.,

L

W
À 1

2π2
≈ 0.051. (3.15)

Even for relatively short quantum point contacts, the quantization of the

conductance is observable [2, 3].

3.4 Impurity in a waveguide

In this section, we consider an impurity in a 2D strip waveguide of size

d, cf. Fig. 3.3(a). The goal is to qualitatively explain the dips below the

conductance steps, cf. Fig. 3.3(b), in the measurement of the conductance

through a quantum point contact. In order to have a clear distinction between

propagating and evanescent modes, we model the quantum point contact as

an infinite tube. We are interested in the situation where the electron has

an energy E which is above the threshold for the first mode, but where the

second mode is still evanescent, E1 < E < E2. The transverse modes are

given by

χn(y) =

√
2

d
sin

[
nπ

y + d/2

d

]
, (3.16)
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3.4 Impurity in a waveguide

with the threshold energies En = ~2π2n2/2md2. The longitudinal wave func-

tions assume the form

φ1(x) = eik1x and φn(x) = e−κnx, n ≥ 2 (3.17)

where k1 =
√

2m(E − E1)/~ and κn =
√

2m(En − E)/~. The Lippmann-

Schwinger equation in 2D is the same as the one in Sec. 2.4,

ψL(r) = ΨL(r) +

∫
d2r′G2D

E (r, r′)V (r′)ψL(r
′), (3.18)

with the 2D Green’s function

G2D

E (r, r′) =
∑
n≥1

χn(y)χn(y′)G1D

E−En
(x, x′) (3.19)

which separates in a projection on the transversal part and a 1D Green’s

function, cf. (2.72),

G1D

E−E1
(x, x′) =

m

i~2k1

eik1|x−x′| and G1D

E−En
(x, x′) = − m

~2κn

e−κn|x−x′|. (3.20)

As the delta potential in 2D leads to divergences, which are connected to

the fact that it induces transitions to all modes, we take a regularized delta

potential V (r) which is V0 for r ∈ [x0 − a/2, x0 + a/2]× [y0 − a/2, y0 + a/2]

and zero otherwise. Next, we plug the unperturbed wave function ΨL(r) =

χ1(y)φ1(x) together with the Ansatz

ψL(r) =
∑
n≥1

cnχn(y)φn(x) (3.21)

(the transmission amplitude tL is given by tL = c1) into the Lippmann-

Schwinger equation (3.18) with x → ∞ and project it on the l-th mode

(integrate against
∫
dy χl(y) . . .). As a result we obtain

cl = δ1l + a2V0

∑
n

Alncn, (3.22)

where the matrix A is defined via

A1n =
m

i~2k1a2

[∫ x0+a/2

x0−a/2

dxφ1(−x)φn(x)

][∫ y0+a/2

y0−a/2

dy χ1(y)χn(y)

]
,

Aln = − m

~2κla2

[∫ x0+a/2

x0−a/2

dxφl(−x)φn(x)

][∫ y0+a/2

y0−a/2

dy χl(y)χn(y)

]
. (3.23)
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Waveguides – Multi-channel scattering problems

The system of equation can be formally solved and we obtain

c = [11− a2V0A]−1c(0) (3.24)

with c
(0)
l = δ1l, where the problem of inverting the infinite dimensional matrix

A still remains. In the situation of Fig. 3.3(b) where the conductance shows

a dip, a quasibound state in the second channel modifies the transmission

through the first channel considerably [4]. For sake of simplicity, we take the

energy to be close to the quantization energy in the second channel E . E2.

In this case only the first and second mode are important and the higher

modes can be neglected. We retain only the 2× 2 matrix

A =

(
A11 A12

A21 A22

)

which can be easily inverted. Plugging it into Eq. (3.24), we obtain the

transmission probability

tL = c1 = 1− iΓ̃

a2V0A22 − 1 + iΓ̃
(3.25)

with

iΓ̃ = a4V 2
0 (A12A21 − A11A22) + a2V0A11. (3.26)

The bound state of the evanescent mode is given by the relation a2V0A22 = 1.

The approximate relation A22 ≈ −mχ2(y0)
2/~2κ2 yields the energy

EB = E2 − a4V 2
0 mχ2(y0)

4

~2
(3.27)

for the bound state of the first evanescent mode; for weak potentials, the

bound state is close to E2. Expanding the transmission amplitude (3.25)

around the position EB of the bound state, we obtain

t = 1− iΓ

E − EB + iΓ
. (3.28)

which is a Breit-Wigner resonance with width

iΓ =
a4V 2

0 mχ2(y0)
4

~2
[a4V 2

0 (A12A21 − A11A22) + a2V0A11] (3.29)

For E = EB, the transmission vanishes t = 0 and the wave function is

completely reflected which explains the dip in Fig. 3.3(b). Note that the

bound state exists for arbitrary weak potentials as the motion is effectively

1D. The resonant reflection exists for a single impurity of arbitrary strength;

only the width Γ of the resonance depends on the strength of the impurity.
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3.5 Waveguide in a magnetic field
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E

Figure 3.4: (a) Setup of a quantum point contact in a in-plane magnetic field.

(b) The solid (dashed) line shows the conductance steps without (with) an

applied magnetic. (c) Every scattering states at energy E is split into two

scattering states at energies E ± µBH.

3.5 Waveguide in a magnetic field

The application of a magnetic field has two effects on the motion of an

electron in a waveguide. First, the levels which where before doubly spin-

degenerate split due to the Zeeman effect. Second, there are orbital effects

in two and three dimensions which were absent in the one dimensional case,

cf. Sec. 2.1.4, as any vector potential can be gauged away. In the following,

we will show both the effects in specific examples.

3.5.1 Zeeman effect in a quantum point contact

A quantum point contact in a 2D electron gas (x, y-plane) with a magnetic

field

H = Hey, (3.30)

in the plane defined by the electron gas cf. Fig. 3.4(a), is described by the

Hamiltonian

H =
1

2m

(
p +

e

c
A

)2

+ U(x, y) + µBH · σ, (3.31)

where −e is the charge of the electron, µB denotes Bohr’s magneton, and σ

are the three Pauli matrices. Note that in-plane magnetic field (3.30) does

not change motion of the particle and we can reduce the Hamiltonian (3.31)

to the Hamiltonian

H = H0 + µBHσy, (3.32)
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Waveguides – Multi-channel scattering problems
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Figure 3.5: (a) Quantum point contact with a perpendicular magnetic field.

(b) Week magnetic field in a tube. (c) Edge states for strong magnetic field

in a sharp potential U(y). (d) Edge states for strong magnetic field in a soft

potential U(y).

i.e., the Hamiltonian H0 = p2/2m+ U(x, y) without the magnetic field plus

the Zeeman term. To any solution (scattering or bound state) of the Hamil-

tonian H0 at energy E, there are two solutions of (3.36) with the kinetic

energies E ± µBH, cf. Fig. 3.4. The spin-degeneracy is split and the conduc-

tance in a quantum point contact rises in steps of e2/h while increasing the

width W of the constriction, cf. Fig. 3.4(b).

3.5.2 Edge states in magnetic field perpendicular to

the sample

If a magnetic field H is applied perpendicular to the plane, Fig. 3.4(a), there

are both Zeeman and orbital effects. In order to keep the discussion simple,

we neglect the Zeeman term and consider the simple situation of a transla-

tional invariant waveguide (tube). The Hamiltonian is given by

H =
1

2m

(
p +

e

c
A

)2

+ U(y), (3.33)

where the potential U(y) does not depend on the position x along the wire.

We assume a constant magnetic field as before but this time the magnetic

field points perpendicular to the electron gas, i.e.,

H = Hez. (3.34)
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3.5 Waveguide in a magnetic field

This magnetic field can be implemented by a vector potential of the form

A = −Hy ex, (3.35)

which depends only on the y coordinate (Landau gauge). The Hamilto-

nian (3.33) assumes the form

H =
1

2m

(
px − eH

c
y
)2

+
p2

y

2m
+ U(y). (3.36)

The Schrödinger equation associated with (3.36) can be separated with the

Ansatz

Ψ(x, y) = eikxχ(y), (3.37)

where the transversal mode χ(y) satisfies the following equation

χ′′n(y) +
2m

~2

[
En(k)− U(y)− mω2

c

2
(y − y0)

2
]
χn(y) = 0, (3.38)

where ωc = eH/mc is the cyclotron frequency and y0 = `2Hk, with `H =√
c~/eH the magnetic length. Solving Eq. (3.38), we can obtain the energy

band En(k) and wave function in the presence of the magnetic field. In the

absence of additional potential U(y) = 0, Eq. (3.38) reduces to the problem

of an harmonic oscillator. The solution is given by the Landau levels

En(k) = ~ωc

(
n+

1

2

)
(3.39)

which are flat bands without dispersion [1].

For weak magnetic fields, we can consider the quadratic potential orig-

inating from H as a perturbation, cf. Fig. 3.4(b). The energy levels are given

by

En(k) = En +
~2k2

2m
+ 〈χ(0)

n |V (y)|χ(0)
n 〉, (3.40)

where En [χ(0)(y)] is the quantization energy [transversal wave function] with-

out magnetic field, and

V (y) =
mω2

c

2
(y − 2y0y). (3.41)

For a strong magnetic field in sharp potential, the transversal mode

structure can be changed considerably for large k and H when the parabola

involves a strong confinement and is shifted far away from the origin, e.g., in
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Waveguides – Multi-channel scattering problems

the case of magnetic field in the box represented at the Fig. 3.4(c). States

form at the boundary of the potential which are called edge states.

For a strong magnetic field and smooth potential, U ′′(y0)/m ¿ ωc, the

effect of magnetic field is to confine the motion to the position y0, i.e., U(y)

can be replaced by U(y0). The energy levels can be estimated as

En(k) = ~ωc

(
n+

1

2

)
+ U(y0) +

~2k2

2m
. (3.42)

An exact solution can be found for a parabolic confining potential

U(y) = mω2
0y

2/2, i.e,

χ′′n(y) +
2m

~2

{
En(k)− m

2

[
ω2

0y
2 + ω2

c (y − y0)
2
]}
χn(y) = 0. (3.43)

Introducing new variables

ω̃2 = ω2
c + ω2

0, ỹ0 = y0
ω2

c

ω2
c + ω2

0

, Ẽn(k) = En(k)− mω2
cω

2
0

2(ω2
c + ω2

0)
y2

0.

this equation can be reduced to single harmonic oscillator

χ′′n(y) +
2m

~2

[
Ẽn(k)− mω̃2(y − ỹ0)

2

2

]
χn(y) = 0. (3.44)

with the spectrum

Ẽn(k) = ~ω̃
(
n+

1

2

)
(3.45)

without dispersion. Going back to the variables without tilde yields

En(k) = ~
√
ω2

c + ω2
0

(
n+

1

2

)
+

mω2
cω

2
0

2(ω2
c + ω2

0)
y2

0. (3.46)

where the k dependence enters through y0 = `2Hk. Equation (3.44) shows

that ỹ0 mark the position of the (edge) states. Let us fix the energy E and

express the position of the edge state in terms of E and n,

ỹ2
0 =

2ω2
c

mω2
0(ω

2
c + ω2

0)

[
E − ~

√
ω2

c + ω2
0

(
n+

1

2

)]
; (3.47)

the larger the energy E the more the state is located towards the edge of the

sample.
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Chapter 4

Many-particle systems

In this chapter, we describe systems where many fermionic particles are par-

ticipating. For noninteracting particles, the total energy of the system is

simply the sum of the individual one-particle energies. The only difficulty is

that for fermionic particle Pauli’s principle has to be fulfilled, i.e., a state can

only be occupied by a single spinless Fermion (or two spin one-half Fermions).

A possible electrochemical potential µ can be thought of as a particle reser-

voir which provides (accepts) particles with an energy µ.

4.1 Persistent current

The persistent current is the effect that a current flows around a ring geom-

etry when we apply a magnetic flux through the loop without any electric

field applied [1, 2]. Theoretically, this is not unexpected at all as we will

see below. However, this effect needs coherence and in early experiments

decoherence was still strong enough to mask the current.

l
0

Φ

Figure 4.1: The loop of the length L with a persistent current flowing around

it driven by a magnetic flux Φ threading the loop.
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4.1 Persistent current

E
n
(ϕ)

0 1−1

(a) (b)

0−1

E(ϕ)

1
ϕ

µ

ϕ

odd N

even N

Figure 4.2: Single- (a) [and many- (b)] particle spectrum of the ring threaded

by a magnetic flux Φ = ϕΦ0. The many particle spectrum shows even/odd

alternation (even without taking into account the spin degree of freedom).

In our theoretical modeling of the ring geometry, let us first consider case

with a fixed number of particles N in the system. For simplicity, we assume

these particles to be spinless and noninteracting. We restrict the Hamiltonian

of a single electron with charge −e

H =
1

2m

(
p +

e

c
A

)2

, (4.1)

to the 1D Hilbert space around the ring, l ∈ [0, L]. Furthermore, we choose

the gauge condition for the constant magnetic field to be A = Ann (with n

is a unit tangent vector and An = Φ/L). Rewriting (4.1) as a 1D problem

involving only the cyclical coordinate l on the ring, cf. Fig. 4.1, we obtain

H =
1

2m

(
−i~ ∂

∂l
+
e

c
An

)2

(4.2)

The energy spectrum, cf. Fig. 4.2(a),

En =
(2π~)2

2mL2

(
n+

Φ

Φ0

)2

, (4.3)

can be obtained easily by using the Ansatz φn(l) = ei2πnl/L for the wave

function; here, Φ0 = hc/e denotes the magnetic flux quantum. Filling in this

single-particle levels to obtain the energy of a N particle state, we observe

that the expression for the energy EN of N particles is different whether N
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is even or odd. Assuming N to be odd yields

Eodd(−1/2 < ϕ < 1/2) =
h2

2mL2

(N−1)/2∑

n=−(N−1)/2

(ϕ+ n)2

=
h2N

2mL2

[
N2 − 1

12
+ ϕ2

]
, (4.4)

with the dimensionless flux ϕ = Φ/Φ0 between −1/2 < ϕ < 1/2 (with peri-

odic continuation); note, that there exists a nondegenerate n = 0 state.For

even N , we obtain

Eeven(0 < ϕ < 1) =
h2

2mL2

N/2−1∑

n=−N/2

(ϕ+ n)2

=
h2N

2mL2

[
N2 + 2

12
+ ϕ(ϕ− 1)

]
. (4.5)

The energies of Eqs. (4.4) and (4.5) are depicted in Figure 4.2(b). The

persistent current is the derivative of the energy with respect to the flux,

I(Φ) = −c ∂
∂Φ

E(Φ/Φ0). (4.6)

On the one hand, for odd N , the current is given by

Iodd(−1/2 < ϕ < 1/2) = − h2cN

mL2Φ0

ϕ, (4.7)

on the other hand, for even N , we obtain

Ieven(0 < ϕ < 1) =
h2cN

mL2Φ0

(1/2− ϕ). (4.8)

Next, we treat the case of a lead (reservoir) with an electrochemical po-

tential µ attached to the loop. We assume that the connection is through a

weak link such that the internal levels of the ring are only slightly perturbed,

see Figure 4.3(a,b). The reservoir does not break the coherence in the ring,

but fixes a chemical potential µ instead of the number of particles N . In

this case, the energy is given by the sum of single particle energies (4.3) with

En ≤ µ. This is equivalent to sum the the level index n over the range

nmin ≤ n ≤ nmax, where

nmin = −
⌊√

2mµ

h
L+ ϕ

⌋
, nmax =

⌊√
2mµ

h
L− ϕ

⌋
; (4.9)
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Figure 4.3: A ring connected through a weak tunnel junction to a reservoir

with fixed electrochemical potential µ. Picture (a) shows a real-space and

(b) an energy-space representations. In (c), the dependence of the current

on the flux is plotted for fixed chemical potential.

here, bxc denotes the floor function. The total energy is given by

E(ϕ) =
(2π~)2

2mL2

nmax∑
n=nmin

(n+ ϕ)2 (4.10)

which yields a persistent current

I(Φ) = − h2c

mL2Φ0

nmax∑
n=nmin

(
n+

Φ

Φ0

)

= − h2c

mL2Φ0

(nmax − nmin + 1)

[
nmax + nmin

2
+

Φ

Φ0

]
(4.11)

plotted in Figure 4.3(c). In reality, elastic (and inelastic) scattering lift the

degeneracy of the levels at the crossing points smearing the sharpness of

the I(Φ) curve in Fig. 4.3. Let us estimate the value of the current (4.11)

in the limit of many particles, |nmax|, |nmin| À 1, and moderate magnetic

fields, Φ/Φ0 ≈ 1. In this limit, we can estimate nmax − nmin ≈ 2kFL where

we introduced the Fermi wave-vector kF =
√

2mµ/~2 and nmax + nmin ≈ 1.

From Eq. (4.11), we obtain

|I| ≈ h2c

mL2Φ0

2kFL =
hkFe

mL
≈ vFe

L
=
e

τ
, (4.12)

where vF = ~kF/m is the Fermi velocity and τ = L/vF is the time of the round

trip. This result for clean limit is in a good agreement with experiment.
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Number of particles(b)(a)

∆µ2n+1

Figure 4.4: (a) Energy levels of a quantum dot coupled to a reservoir at

electrochemical potential µ. The reservoir provides (accepts) particles with

energy µ. (b) Number of particles in the dot as a function of the applied

electrochemical potential µ.

In the dirty limit, theory predicts that the current is suppressed by the

factor τ/τD, where τD = L2/vF` is the diffusive travelling time around the

ring. Therefore, the magnitude of the persistent current is expected to be

given by

|ID| ≈ e

τD

. (4.13)

Experimentally [3], ID is much larger than this. Over ten years, the dis-

crepancy was tried to resolve without success. Recently, Schechter, Imry,

et al. [4] explained the magnitude of the persistent current with attractive

pairing-interacting known from BCS superconductivity.

4.2 Coulomb blockade in a quantum dot

For a system of noninteracting electrons, a electrochemical potential can only

change the number of electrons in pairs of two as every level is doubly de-

generate (an electron with spin-up has the same energy as an electron with

spin-down in the same state). Coulomb interacting in a box lifts this degen-

eracy, cf. Fig. 4.4(a). In order to find the region of electrochemical potential

µ where the ground state is given by an even number (2n) of particles, we

calculate energy of the states with 2n − 1, 2n, and 2n + 1 electrons in the

box, taking into account charging effects. The energy of 2n + 1 electrons is

given by

E2n+1 = 2εn + εn+1 +
e2

2C
(2n+ 1)2 − (2n+ 1)eU + E0. (4.14)
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4.2 Coulomb blockade in a quantum dot

where the first two terms denote the energy of the noninteracting particles

2n+1, 2n, and 2n−1, the term involving the capacitance C of the box is the

charging energy, −(2n+ 1)eU denotes the electric energy in the potential U

between the reservoir and the dot, and E0 is all the additional energy of the

electron reservoir and the 2n − 2 other particles. Moving one particle from

the box to the reservoir, the energy is given by

E2n = 2εn + µ+
e2

2C
(2n)2 − 2neU + E0, (4.15)

involving the additional energy µ as well as the obvious changes in the charg-

ing terms. Similar considerations yield the following expression for the energy

of 2n− 1 particles in the box,

E2n−1 = εn + 2µ+
e2

2C
(2n− 1)2 − (2n− 1)eU + E0. (4.16)

In order that E2n is the ground state, we need

E2n < E2n−1, and E2n < E2n+1 (4.17)

which can be rewritten as

εn +
e2

2C
(4n− 1) < µ+ eU < εn+1 +

e2

2C
(4n+ 1). (4.18)

Changing µ, the ground state is given by a even number of particles over

region of size

∆µ2n = εn+1 − εn +
e2

C
. (4.19)

Performing the same analysis for an odd number (2n+1) of particles, we

have to compare the energies

E2n+2 = 2εn + 2εn+1 +
e2

2C
(2n+ 2)2 − (2n+ 2)eU + E0, (4.20)

E2n+1 = 2εn + εn+1 + µ+
e2

2C
(2n+ 1)2 − (2n+ 1)eU + E0, (4.21)

E2n = 2εn + 2µ+
e2

2C
(2n)2 − 2neU + E0. (4.22)

In order that 2n+ 1 particles are in the ground state, the conditions

εn+1 +
e2

2C
(4n+ 1) < µ+ eU < εn+1 +

e2

2C
(4n+ 3) (4.23)

60



BIBLIOGRAPHY

have to be fulfilled. Over a region of size

∆µ2n+1 =
e2

C
(4.24)

in µ, the ground state is given by an odd number of particles. Note that

when the charging energy goes to zero (by continuous charge e→ 0 or large

box C → ∞), the ground state involves always an even number of particles

as ∆µ2n+1 = 0. When the electrochemical potential µ assumes the value

µ2n = εn +
e2

2C
(4n− 1)− eU,

µ2n+1 = εn+1 +
e2

2C
(4n+ 1)− eU,

µ2n+2 = εn+1 +
e2

2C
(4n+ 3)− eU,

an additional particle enters the dot, cf. Fig. 4.4(b).
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Chapter 5

Scattering matrix approach

So far we were reviewing scattering problems. This is the natural starting

point for the discussion of coherent transport. Nevertheless, the measurement

of individual electrons being scattered in the conductor is hard to measure.

In this chapter, we want to bridge over to a quantity which can be easily

measured, the conductance G. As already mentioned before, it turns out

that the conductance is given by the conductance quantum G0 = 2e2/h

weighted with transmission probability of the channels participating in the

transport; here, the factor of 2 originates from the spin degeneracy.

5.1 Conductance in a 1D wire

Assume that an electron reservoir provides spinless electrons incoming from

the left k > 0 up to the energy µ; an experimental realization would be a

quantum wire being biased by a voltage µ = −eVB. As the conductor is co-

herent, these electrons populate the Lippmann-Schwinger scattering states.

Lippmann-Schwinger scattering state constitute a continuum such that there

appears the problem of how to count these states. Usually, one introduces

periodic boundary conditions putting the problem on a ring with circumfer-

ence L making the spectrum discrete and then letting L→∞. Here, we want

to pursue a different approach and form wave packets out of the extended

states.

Partitioning the energy range [0, µ] into N sets of size ∆ = µ/N , we form
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5.1 Conductance in a 1D wire

the wave packets

Ψn(x, t) = cn

∫ n∆

(n−1)∆

dEΨL,E(x)e−iEt/~ (5.1)

with n = 1, . . . , N and ΨL,E(x) is the Lippmann-Schwinger scattering state

(2.2) at energy E. The normalization constant can be calculated using the

relation (k =
√

2mE/~)
∫
dxΨ∗L,E′(x)ΨL,E(x) = 2πδ(k′ − k) (5.2)

of the scattering states with the asymptotic form

ΨL,E(x) =

{
eikx + rL,Ee

−ikx x→ −∞
tL,Ee

ikx x→∞
. (5.3)

Computing
∫
dx |Ψn(x, t)|2 and setting it equal to 1 to normalize the wave

packet yields

cn =
1√
h∆vn

(5.4)

with vn =
√

2n∆/m the velocity of the n-th wave-packet; here, we have

assumed ∆ to be small. The wave packets in Eq. (5.1) are localized around

x = 0 at time t = 0 with a spreading of approximately hvn/∆. In time, they

are moving with a velocity vn. For ∆ → 0 (i.e., N → ∞), the wave packets

become broader and broader approaching the scattering states (5.3).

Next, we want to calculate the current I originating from the transport

of these wave packets. The current is additive such that we can compute the

current In of a single wave packet with index n, hereafter, summing up the

contributions of the individual wave packets. In Sec. 2.1.1 it was shown that

the current is independent on the position, such that the current

In = i
e~
2m

[
Ψn(x)∗Ψ′n(x)−Ψ′n(x)∗Ψn(x)

]
(5.5)

can be obtained in the left asymptotic region with ΨL(x) ∼ tL,Ee
ikx leading

to (∆ → 0)

In = −c2n∆2evn Tn∆ = − e
h

∆Tn∆, (5.6)

where TE = |tL,E|2 is the transmission probability at energy E. Summing up

the contributions of the different wave packets yields the total current

I =
N∑

n=1

In = − e
h

∆
N∑

n=1

Tn∆
(∆→0)→ − e

h

∫ µ

0

dE TE (5.7)
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where in the limit ∆ → 0 the sum of n becomes a Riemann integral. There-

fore, the conductance, the ratio between current I and voltage VB = −µ/e,
is given by

G =
I

VB

=
e2

h

∫ µ

0

dE

µ
TE, (5.8)

Landauer’s formula for the conductance [1, 2].

The wave functions in the continuous spectrum are not normalizable.

Therefore building many-body states out of the continuum, it is a priori not

clear how much current a state carries. The trick to build wave packets out

of the states in the continuous spectrum is a way to handle the question how

to count the contribution of these states. Nevertheless, it is a bit awkward

to follow the procedure outlined in this chapter—e.g., to form wave packets,

normalize them, sum up their contributions and then let the size of the wave

packets go to ∞—every time one has to work with a continuous spectrum.

Luckily, there is a simple recipe which bypasses the formation of the wave

packets. The relation (5.2) provides information about how to add up the

contribution of the individual states: assuming the states ψξ(x) to form a

continuum with the “normalization” relation
∫
dxψξ(x)ψξ′(x) = c(ξ)δ(ξ − ξ′) (5.9)

the expectation value of the current operator (or any other operator which

is additive) is given by

I =

∫
dξ

c(ξ)
n(ξ)Iξ (5.10)

where Iξ is the current from a particle in the state ψξ(x) and n(ξ) is the

occupation function (either 0 or 1) which tells if the states with index ξ is

occupied in the many-body state or not; for temperatures ϑ 6= 0 n(ξ) can

assume any values between 0 and 1. For the case discussed above, ξ = k,

Ik = −e~kTE/m, c(k) = 2π, and

n(k) =

{
1 ~2k2/2m < µ

0 otherwise.

Plugging these results in (5.10), we obtain

I = −e~
m

∫ k(µ)

0

dk

2π
kTE = − e

h

∫ µ

0

dE TE, (5.11)
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which agrees with Eq. (5.7). In the last step, we have changed the integration

variable from the wave vector k to the energy E using the density of state

(in 1D)

ν(E) =
dk

dE
=

m

~2k
(5.12)

which canceled the factor k in the integral: each energy interval carries the

same current, a curious feature of 1D ballistic transport which leads to the

Landauer formula for the conductance.

5.2 Coherent conductor

So far, we discussed the simple model of spinless electrons incoming from

the left to show the basic feature of 1D transport that each energy interval

carries the same contribution to the current. In a more realistic situation,

there are spin 1/2 electrons incoming from two reservoirs, one at the left with

chemical potential µL feeding ΨL(x) and one at the right µR feeding ΨR(x).

The total current is then the sum of the two currents

IL = −2e

h

∫ µL

0

dE TE (5.13)

and

IR =
2e

h

∫ µR

0

dE TE, (5.14)

where a factor of two takes into account the spin degeneracy (each state is

doubly occupied, once with spin up and once with spin down) and the current

IR generated by the state incoming from the right acquires a minus sign with

respect to (5.7) as the wave vectors and velocities of ΨR(x) are opposite to

ΨL(x), cf. Eqs. (2.2) and (2.3). In the total current

I = IL + IR = −2e

h

∫ µL

µR

dE TE (5.15)

the contributions of the energy interval present in both baths cancel and

only the states which are biases from one side with respect to the other carry

current.
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Figure 5.1: Particle density (shading) due to the Lippmann-Schwinger states

originating from the left and right electron reservoir (averaged over several

wavelength to get rid of Friedel oscillations). The densities due to the states

below µR are equal (dark gray). Whereas for states between µR and µL there

is a charge accumulation left of the scatterer (for T 6= 1).
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Figure 5.2: Appearance of the Landauer voltage drop VL at the scatterer.

Due to the bending of the band bottom, the states being emitted from the

right reservoir between 0 and VL are completely reflected.

67
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5.3 Landauer dipole

After having discussed the current which is generated by a bias in the chem-

ical potential between the left and right reservoir, we want to turn our at-

tention to the charge density generated by this stationary situation; here, we

assume µL > µR to match with the figures. The left reservoir feeds states

of the form (5.3) and the right reservoir the corresponding scattering states

ΨR,E at energy E which are incoming from the right. The total density at

the right of the scatterer is given by the sum

ρR = 2

∫ k(µL)

0

dk

2π
|ΨL,E(x)|2 + 2

∫ k(µR)

0

dk

2π
|ΨR,E(x)|2

≈ 2

∫ k(µL)

0

dk

2π
TE + 2

∫ k(µR)

0

dk

2π
(1 +RE) (5.16)

of the contributions of the left and right scattering states and the factor of

2 is due to the spin degeneracy; in the last step, we have averaged over a

length ∝ √
2mµ/~ in order to get rid of the oscillations with period 2k(µ)

(Friedel oscillations). A calculation of the density to the left of the scatterer

yields

ρL ≈ 2

∫ k(µL)

0

dk

2π
(1 +RE) + 2

∫ k(µR)

0

dk

2π
TE. (5.17)

For nonvanishing voltage bias µL 6= µR and nonperfect transmission T 6= 1,

the densities to the right is not equal to the density to the left. The change

in density is given by

ρL − ρR = 4

∫ k(µL)

k(µR)

dk

2π
RE (5.18)

where we used the fact that RE + TE = 1. The difference in particle density

leads to a charge dipole (as the electrons are charged with charge −e) and

therefore a voltage drop which will be built up in the stationary situation.

The voltage drop bends the band bottom. The size of Landauer voltage drop

VL in the stationary situation can be obtained by the requirement that the

incoming leads remain charge neutral, i.e., equal particle density on both

sides of the scatterer, cf. Fig. 5.2. Assuming a voltage drop VL over the

scatterer, the left-incoming scattering state at energy E (measured from the
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band bottom in the right part of the lead) assume the new form

ΨL,E(x) =




eikx + rL,Ee

−ikx x→ −∞√
k
k̃
tL,E e

ik̃x, x→∞,
(5.19)

where k(E) =
√

2m(E + eVL)/~ (k̃(E) =
√

2mE/~) is the wave vector in the

left (right) asymptotic region. Similarly, the right scattering state is given

by

ΨR,E(x) =




e−ik̃x + rR,Ee

ik̃x x→∞√
k̃
k
tR,E e

−ikx, x→ −∞.
(5.20)

As we discussed in Sec. 3.2, the factor
√
k/k̃ is required to render the scat-

tering matrix unitary; note that the scattering problem has to be solved

again with the bended band bottom due to VL, e.g., right scattering states

with energies E < −eVL, i.e., states which are below the band bottom in the

left lead, are completely reflected RE<−eVL
= 1. The density due to the left

scattering states at the left of the scatterer is given by (averaged over some

wave lengths)

ρLL = 2

∫ k(µL)

0

dk

2π
(1 +RE), (5.21)

where the factor of two is due to the spin degeneracy. The density to the left

of the scatterer originating from the right scattering states assumes the form

ρLR = 2

∫ k̃(µR)

k̃(−eVL)

dk̃

2π

k̃

k
TE. (5.22)

Similar, calculating the densities to the right of the scatterer yields

ρRL = 2

∫ k(µL)

0

dk

2π

k

k̃
TE, (5.23)

ρRR = 2

∫ k̃(µR)

k̃(−eVL)

dk̃

2π
(1 +RE) + 2

∫ k̃(−eVL)

0

dk̃

2π
(1 + 1), (5.24)

where the last term appears due to the part below the left band bottom

which is completely reflected.

It is not convenient to perform th integrations over k and k̃. Therefore,

we make a change of variables and integrate over energies. For ρLL, we obtain
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5.3 Landauer dipole

[dk = (m/~2k)dE]

ρLL =
2

~

√
m

2

∫ µL

−eVL

dE

2π

1 +RE√
E + eVL

. (5.25)

Analogously, for ρLR, we have [dk̃ = (m/~2k̃)dE]

ρLR =
2

~

√
m

2

∫ µR

−eVL

dE

2π

TE√
E + eVL

. (5.26)

A similar calculation for ρRL and ρRR yields

ρRL =
2

~

√
m

2

∫ µL

−eVL

dE

2π

TE√
E
, (5.27)

ρRR =
2

~

√
m

2

∫ µR

−eVL

dE

2π

1 +RE√
E

+
2

~

√
m

2

∫ −eVL

0

dE

2π

2√
E
. (5.28)

Summing up the densities at the left ρL = ρLL + ρLR while using TE +RE = 1

yields

ρL =
2

~

√
m

2

∫ µR

−eVL

dE

2π

2√
E + eVL

+
2

~

√
m

2

∫ µL

µR

dE

2π

1 +RE√
E + eVL

, (5.29)

while the total density to the right is given by

ρR =
2

~

√
m

2

∫ µR

0

dE

2π

2√
E

+
2

~

√
m

2

∫ µL

µR

dE

2π

TE√
E
. (5.30)

Assuming charge neutrality, the densities need to be equal, i.e.,

∫ µL

µR

dE

2π

1 +RE√
E + eVL

=

∫ µR

µR+eVL

dE

2π

2√
E

+

∫ µL

µR

dE

2π

TE√
E
. (5.31)

This equation provides a way to calculate the Landauer voltage drop VL

for arbitrary energy dependent transmission and arbitrary large shifts in

chemical potential. In order to solve for VL, we assume the (linear case) of

small ∆µ ≡ µL−µR ¿ min{µL, µR}; it follows that also the Landauer voltage

|eVL| ¿ min{µL, µR} is small. Let us assume that TE is constant over the

small energy interval [µR, µL] interval. Then, we can replace
√
E + eVL by√

E and take TE and RE out of the integral in (5.31). Finally, we obtain the

Landauer voltage

− eVL = ∆µR. (5.32)
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µ

Figure 5.3: Initial (dashed lines) 1D potential (lower part) and initial elec-

trochemical potential (upper part). Bias voltage modifies the potential and

the electrochemical potential (solid line).

The voltage drop VL is zero for perfect transmission and assumes its maximum

value −eVL = ∆µ when all electrons are reflected. The current is given by

I = −2e

h
T∆µ, (5.33)

cf. (5.15) which leads to a Landauer resistance

RL =
VL

I
=

2h

e2
R

T
. (5.34)

5.4 Contact resistance

The resistance in Eq. (5.34) is different than the one obtained by inverting G

in the Landauer formula (5.8). One can think about (5.8) to be the conduc-

tance measured in a two-probe measurement while Eq. (5.34) is the resistance

measured in a four-probe setup. The Landauer voltage only takes into ac-

count the voltage which drops immediately at the scatterer. Nevertheless,

for coherent transport there is an additional voltage drop at the boundaries

of the 1D conductor. This is the reason why the two formulas for the con-

ductance do not match. If we subtract the Landauer voltage drop over the

scatterer VL from the total shift in the electrochemical potential ∆µ = −eVB,

we obtain

∆µ+ eVL = ∆µT.

Out of symmetry considerations, we expect this additional voltage drop to

be split symmetrically between the contributions at both boundaries. At one

of the boundaries there is an additional voltage ∆µT/2 which corresponds

to a resistance

RS =
h

4e2
, (5.35)
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5.5 2D electron density

called Sharvin resistance. Figure 5.3 shows the example of a ballistic con-

ductor (T = 1). If we apply a voltage, there appears a finite current of size

I = 2e2/hVB. Nevertheless, there cannot be any voltage drop within the 1D

conductor (no back reflection). Therefore, we conclude that half of the volt-

age drops at the entrance and half of the voltage at the exit; for a detailed

calculation supporting this argument, see Refs. [3, 4].

5.5 2D electron density
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d
k2k1

· · ·

Figure 5.4: (a) 2D Fermi surface. (b) 1D conducting channel with a number

N of modes. As the width d→∞, the quantization energy En of more and

more modes lie below the Fermi energies and the 2D nature of the Fermi

surface is restored.

Let us consider 2D reservoir and calculate the electron density given the

electrochemical potential µ. Therefor, we integrate unity over the 2D wave

vectors k = (kx, ky) inside the 2D Fermi circle

ρ2D =
2

(2π)2

∫

|k|<kF

dkxdky =
k2

F

2π
(5.36)

where the factor of two appears due to the spin degeneracy and kF =
√

2mµ/~
is the Fermi wave-vector.

As the reservoir feeds a 1D conductor, we can think about it as a 1D

conductor whose lateral size d is very large. Let us see if we can restore

the 2D Fermi surface while thinking about the reservoir as being a thick 1D

conductor. As we have already seen before, in a 1D conductor with finite

thickness modes appear. The electron density in the wire can be calculated

by summing up all the 1D densities of the different modes. The electron
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density in the first mode is given by

ρ1D

1 =
2k1(µ)

πd
=

2

πd

√
k2

F −
π2

d2
. (5.37)

Similarly, for nth mode, we obtain

ρ1D

n =
2kn(µ)

πd
=

2

πd

√
k2

F −
π2n2

d2
. (5.38)

All modes with a quantization energy En < µ contribute. The total electron

density is then given by

ρ2D =

nF∑
n=1

ρ1D

n =
2

πd

nF∑
n=1

√
k2

F −
π2n2

d2
, (5.39)

where nF = bd kF/πc is the largest propagating mode number. In the limit

of a wide conductor, many channel contribute nF À 1. The sum in (5.39)

can be replace by an integral1

ρ2D =
2

πd

∫ kFd/π

0

√
k2

F −
π2x2

d2
=

2k2
F

π2

∫ 1

0

√
1− λ2dλ =

k2
F

2π
, (5.40)

which is the same as (5.36). The electron reservoir can be thought of as a

1D conductor with many channels. As the electrons enter the 1D part the

constriction becomes narrower. All channels up to a few are then reflected.

As we have seen reflection is connected to a voltage drop due to the Landauer

dipole. That is a way to understand the voltage drop at the boundaries

between the conductor and the reservoir.

5.6 Negative differential conductance

Here, we would like to discuss a experiment performed in 1989 [5], where

back reflection over the barrier led to a negative differential resistance. Let

us consider a quantum point contact whose transverse quantization induces

a tunneling barrier of height E1 (solid line in Fig. 5.5(a). Biasing the device

with a voltage ∆µ = −eVB a current given by Eq. (5.15) starts to flow. For

moderate bias, the current behaves almost linear. Increasing the bias to the

value

− eVB/2 > E1, (5.41)

1Here we use
∫ 1

0

√
1− λ2dλ =

∫ π/2

0
cos2 φdφ = π/4.
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R = 1
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Figure 5.5: (a) A conductor involving a quantum point contact with quan-

tization energy E1 (dashed line). Applying a bias voltage −eVB > E1 the

effective potential can be approximated by U(x) (solid line). (b) Negative

differential resistance appearing between 2E1 and 2E2. (c) Effective poten-

tial for the case when the bias is large; all electron from the right reservoir

are reflected and do not contribute to the transport.

electrons only move from left to right as RE<µR
= 1 (the energy is measured

from the band bottom far to the right of the scatterer). In the situation, we

the second mode does not participate in the transport, i.e.,

− eVB/2 < E2 =
4π2~2

2md2
. (5.42)

The dashed potential in Fig. 5.5 can be approximated by

U(x) = − eVB

1 + eαx
, (5.43)

dashed line in Fig. 5.5(a), where the reflection probability

R =
sinh2[π(k − k̃)/α]

sinh2[π(k + k̃)/α]
, E > −eVB (5.44)

can be calculated exactly [6]: here, k =
√

2m(E + eVB)/~ and k̃ =
√

2mE/~
are the wave vectors left and right of the scattering region, respectively.

Note, that the reflection coefficient is not vanishing for energies E > −eVB as

one might expect; there appears a reflection above the barrier. An increase
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(a) N-type NDR (b) S-type NDR

V

I

V

I

Figure 5.6: The current-voltage characteristics for (a) N-type or voltage-

controlled and (b) S-type or current-controlled negative differential resistance

(NDR).

in the bias voltage leads to an increase in k which tends to reduces the

transmission probability and decreases the conductance, cf. Fig. 5.5(b). Only

when the second mode becomes transmitting, the conductance rises again.

The situation described above is called voltage-controlled negative differential

resistance (or N-type nonlinearity, as the current-voltage characteristics is N

shaped), cf Fig. 5.6(a). There exists also the current-controlled negative

differential resistancs which is S shaped, cf Fig. 5.6(b).

5.7 Landauer current for a double barrier

In this section we calculate the Landauer current for the double barrier

I = −2e

h

∞∫

−∞

dE [nL(E)− nR(E)]T (E). (5.45)

where nL (nR) are the occupation functions of the left (right) reservoir. In

section 2.3.3, we obtained the transmission amplitude of the double barrier

structure

tL =
t1t2

1− r1r2e2ikL
, (5.46)

where k =
√

2mE/~ is the wave vector associated to the energy E, L is the

distance between the two scatterers, and ti, ri are transmission and reflection

amplitudes of the i-th barrier (i = 1, 2). The transparency of the barrier is

given by

T ≡ |tL|2 =
T1T2

1 +R1R2 − 2
√
R1R2 cos(2kL+ 2ϕr)

, (5.47)
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5.7 Landauer current for a double barrier

where Ti = |ti|2, Ri = |ri|2 are the transmission and reflection probabilities of

the barriers, and ϕr = (ϕr
1+ϕ

r
2)/2 (ϕr

i = arg ri). The transmission probability

T (E) assumes its maximum (resonance) at wave vectors kn = (πn − ϕr)/L

with corresponding energies

En =
~2

2mL2

(
πn− ϕr

)2
, (5.48)

cf Fig. 5.7(a). The maximal value of T (E) is given by

Tmax =
T1T2

(1−√R1R2)2
, (5.49)

which is unity for a symmetric barrier with T1 = T2. Let us define the spacing

between energy levels as

∆n =
|En+1 − En−1|

2
= 2π

~2

2mL2

∣∣πn− ϕr
∣∣, (5.50)

cf. Eq. (5.48); note that the energies are not equidistant and that the con-

tinuous definition ∆n = |∂En/∂n| would yield the same result. Next, we

analyze the expression (5.47) near a resonance energy En (5.48). For that,

we expand the cosine in the denominator up to the second order in the energy

shift δEn = E − En and obtain

T =
T1T2

1 +R1R2 − 2
√
R1R2

[
1−mL2(δEn)2/~2En

] . (5.51)

Rewriting this expression in the Breit-Wigner form

TBW =
Γ2

n

Γ2
n + (δEn)2

Tmax, (5.52)

we introduce the half width of the resonance as

Γn =

√
~2En

2mL2

1−√R1R2

4
√
R1R2

=
∆n(1−√R1R2)

2π 4
√
R1R2

. (5.53)

For a sharp resonance T1,2 ¿ 1, Eq. (5.53) can be rewritten in the simpler

form

Γn =
∆n

2π

T1 + T2

2
; (5.54)

note that the resonance becomes sharper the smaller T1 and T2.
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Figure 5.7: (a) Transmission probability T (E) as a function of energy. (b)

The Landauer current as a function of voltage bias VB. Each resonance add

to the current value In = (2e2/h)πΓn

Next, we want to calculate the current (5.45) for a symmetric barrier

T1 = T2 with sharp resonances T1,2 ¿ 1 at zero temperature. Assuming

a voltage bias VB to be applied between the left and right reservoir, their

electrochemical potentials are changed and assume the values µL = µ −
eVB/2 for the left reservoir and µR = µ + eVB/2 for the right reservoir. The

integration in the Landauer formula for the current 5.45 is restricted to energy

interval [µ+ eVB/2, µ− eVB/2]; the current assumes the form

I(VB) = −2e

h

µ−eVB/2∫

µ+eVB/2

T (E)dE. (5.55)

Only energies near one of the resonances En contribute to the current. As-

suming that only the n-th resonance resides within the integration area, we

can perform the substitution ϕ = ϕr +L
√

2mE/~ to change from the energy

variable E to ϕ, we obtain the current flowing through the n-th resonance

In(VB) = −2e

h

√
~2

2mL2
En

∫
dϕ

1 + (2/T1)2 sin2 ϕ/2a
. (5.56)

we omit the integration limits for simplicity and replace E by En as slightly

changed function; also we replace R1 by unity. Making the integration we

obtain2

In(VB) =
2e

h
Γn arctan

(
4

T 2
1

tan
1

2

√
2mL2

~2En

(E − En)

)∣∣∣∣
µ+eVB/2

E=µ−eVB/2

. (5.57)

2We use
∫

dϕ
1+λ2 sin2 ϕ

= 2√
1+λ2 arctan

(√
1 + λ2 tan ϕ

2

) ≈ 2
λ arctan

(
λ tan ϕ

2

)
for λ À 1.
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5.8 Landauer current for a quantum point contact

If all resonance (region [En−Γn . . . En +Γn]) hit in the region [µ−eVB . . . µ+

eVB] then we can expand the limits to VB → −∞ and (5.57) gives the value

In =
2e

h
πΓn. (5.58)

This current represents the additional current which appears at each reso-

nance, cf Fig. 5.7(b).

5.8 Landauer current for a quantum point

contact

−eVB

I

−eV
∗

B

~Ω

Figure 5.8: Current through a QPC versus the applied bias voltage VB.

5.9 Thermoelectric current

Up to now, we have always considered the zero temperature situation. It is

a result of statistical mechanics that the occupation function n(E) which at

zero temperature was either 0 or 1 dependent on the fact weather the state

was occupied or not, has to be replaced by the Fermi distribution function

n(E) =
1

e(E−µ)/Θ + 1
, (5.59)

with Θ = kBϑ the temperature ϑ in units of energy and kB is the Boltzmann

constant. Trivial effects of the finite temperature include the smearing in the

steps in quantized conductance function G(W ) and of the sharp features of

I(V ) near resonances.

To study the thermoelectric effects, we have to consider the case when

the temperatures in the left ΘL and in the right ΘR reservoirs are different
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from each other with a bias δΘ = ΘL − ΘR. In this case a thermocurrent

(= the electrical current induced by the temperature difference without an

applied electric potential) of size

I(V ) = −2e

h

∞∫

−∞

dE [nL(E)− nR(E)]T (E). (5.60)

will flow. It can be shown from the general formula (5.60) that for energy

independent transmission probability with ∂ET (E) = 0 now current will be

induced.
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E

ΘL = 0 ΘR 6= 0

E1 = EF

x

nL(E) nR(E)
I

T (E)

Figure 5.9: Explanation for thermocurrent appearance. Only electrons with

energies E > EF can propagate over the barrier from the right form ther-

mocurrent.

At first, we study a simple example where we will show the basic principle

for energy dependent transmittance. Let us for simplicity assume a quantum

point contact with an ideal quantization

T (E) =

{
0, E < E1,

1, E > E1
(5.61)

where the electrochemical potentials of the reservoirs is tuned to the quan-

tization energy, µ = E1, such that µ is at threshold of opening the first

channel. Setting the left reservoir to zero temperature ΘL = 0, no particle

will penetrate from the left and the part with E > µ of the electrons in

the right reservoir will be able to overcome the barrier; the thermoelectric

current is therefore given by

I = −2e

h

∞∫

−∞

dE [nL(E)− nR(E)]T (E) =
2e

h

∞∫

0

dε
1

eε/ΘR + 1
, (5.62)
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5.10 Joule heat

with ε = E − µ. Performing the integration over ε, we obtain3

I =
2e

h
∆Θ. (5.63)

If the circuit is not open, a voltage should compensate the temperature

gradient such that no current flows. Applying both a temperature difference

∆Θ and a voltage VB, the general expression (5.60) assumes the form

I(∆Θ, V ) = −2e

h

∞∫

−∞

dE

{
1

e(E−µ+eVB)/(Θ+∆Θ) + 1
− 1

e(E−µ)/Θ + 1

}
T (E).

(5.64)

If the temperature difference ∆Θ is small and T (E) depends only weakly on

energy E, the Fermi functions can be expanded and the condition that no

current flows I(∆Θ, VB) = 0 yields

0 = −2e2

h
VB

∞∫

−∞

dE
∂n(E)

∂E
T (µ)

+
2e

h
∆Θ

∞∫

−∞

dE
∂n(E)

∂E

E − µ

Θ

[
T (µ) + (E − µ)

∂T (µ)

∂E

]
. (5.65)

The voltage eVB which builds up due to the temperature difference is called

the thermoelectric voltage. The linear coefficient α = VB/∆ϑ is called

thermopower. Rewriting Eq. (5.65), we obtain the Cutler-Mott formula

[ζ = (E − µ)/Θ]4

α = −kBΘ

e

∂ log T (µ)

∂E

∫ ∞

−∞
ζ2∂n

∂ζ
dζ =

π2

3

k2
Bϑ

e

∂ log T (µ)

∂E
. (5.66)

5.10 Joule heat

As we have already seen, in a quantum conductor a current may flow in re-

gion where no electric field is applied. Another unusual fact is that heat is

produced not in the region where the voltage drops. The energy relaxation

actually takes place in the reservoirs via the emission of bosonic degrees of

3We use
∫∞
0

dζ
eζ+1

=
∫∞
1

dλ
λ(λ+1) =

∫∞
1

(
1
λ − 1

λ+1

)
dλ = log λ

λ+1

∣∣∞
1

= log 2.
4We use

∫∞
−∞ ζ2 ∂n

∂ζ dζ = −π2

3 .
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Figure 5.10: Explanation for Joule heat. The contact has characteristic

length L much smaller than inelastic length `in and coherence length `ϕ.

freedom (phonons, photons). Let us estimate the rate of the energy dissipa-

tion. For that we subdivide the relevant energy range ∆µ = µL − µR into

N distinct intervals of size ∆µ/N . In each of these intervals (∆µ/N)(2/h)T

electrons are transfered per unit of time. The energy which each of it emits

is given by ∆µn/N , where n labels the energy interval. Summing up the

contributions of all intervals yields to total emitted heat per unit time

P =
N∑

n=1

∆µn
∆µ

N2

2

h
T =

(∆µ)2

2

2

h
T =

(eVB)2

2

2

h
T =

VBI

2
. (5.67)

5.11 Heat current – Wiedemann-Franz law

For an applied temperature difference ∆Θ 6= 0, no thermoelectric current

flows without an appreciable dependence of T on the energy around the

chemical potential µ. But even without an electric current flowing, the heat

flux

IQ =
2

h

∞∫

−∞

dE [nL(E)− nR(E)]T (E)(E − µ). (5.68)

is still nonzero; as motivated in Sec. 5.10 the factor 2/h originates from the

amount of electrons transferred in unit time and the factor E − µ measures

the energy which each of the electrons transports. For the case of α = 0

(∂ET (µ) = 0), the thermal current is given by

IQ =
G

e2

∫ ∞

−∞
dE [nL(E)− nR(E)](E − µ). (5.69)
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5.12 Violation of the Wiedemann-Franz law

with the electric conductance G = (2e/h)T . By assuming a small tempera-

ture bias ∆T and expanding nL(E)− nR(E), we obtain

IQ = ∆Θ
G

e2
Θ

∞∫

−∞

ζ2∂n

∂ζ
dζ (5.70)

with ζ = (E − µ)/Θ. Performing the integration as in Sec. 5.9, we obtain

the Wiedemann-Franz law

κ =
π2

3

(
kB

e

)2

Gϑ (5.71)

with the thermal conductivity κ = IQ/∆ϑ.

5.12 Violation of the Wiedemann-Franz law

In the case where the transmission probability around the chemical potential

µ is strongly energy-dependent, an additional thermoelectric voltage

VB = α∆ϑ (5.72)

develops which also leads to a heat flow; in this situation the Wiedemann-

Franz law (5.71) can be violated. Inserting Eq. (5.72) into the formula for

the heat current (5.68), we obtain

IQ =
2

h

∞∫

−∞

dE

{
1

e(E−µ+eα∆ϑ)/(Θ+∆Θ) + 1
− 1

e(E−µ)/Θ + 1

}
T (E)(E − µ).

(5.73)

Expanding this expression as usual in ∆Θ, we obtain

IQ =
2

h

∞∫

−∞

dE

[
eα

kB

∂T (µ)

∂E
− T (µ)

Θ

]
(E − µ)2 ∂n(E)

∂E
∆Θ. (5.74)

Performing the integration, we have

IQ = Gϑ

[
−α2 +

π2

3

(
kB

e

)2
]

∆ϑ. (5.75)

Thus, only if α ¿ (π/
√

3)(kB/e), the Wiedemann-Franz law is correct. On

the other hand it is even possible that α > (π/
√

3)(kB/e); but even in the case

of a large thermopower, κ will still be positive as a more careful calculation

shows.
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Figure 5.11: Setup for Peliter heating/cooling.

5.13 Large thermopower

As an example for a situation where α > (π/
√

3)(kB/e) consider the case of

the scattering at a quantum point contact where the difference U0 = E1−µ of

the quantization energy of the first mode E1 to the electrochemical potential

is much larger than the temperature, U0 À Θ. In the situation of perfect

quantization, the thermoelectric voltage is obtained by the relation

0 = I = −2e

h

∫ ∞

E1

dE

{
1

e(E−µ+eVB)/(Θ+∆Θ) + 1
− 1

e(E−µ)/ΘR + 1

}

≈ −2e

h

{
eVB

∫ ∞

E1

dE
∂n(E)

∂E
−

∫ ∞

E1

dE
E − µ

Θ

∂n(E)

∂E
∆Θ

}
; (5.76)

or equivalently, introducing ζ = (E − µ)/Θ as before,

eVB

∫ ∞

U0/Θ

∂n

∂ζ
dζ = ∆Θ

∫ ∞

U0/Θ

ζ
∂n

∂ζ
dζ. (5.77)

For U0/Θ À 1, we can estimate n as e−ζ and obtain

VB =
U0

eΘ
∆Θ (5.78)

which yields

α =
U0

eϑ
À kB

e
, (5.79)

and therefore in this system the Wiedemann-Franz law is not valid.

5.14 Peltier heating/cooling

Consider a system where a big chaotic dot is connected to two external

reservoirs via two leads, cf. Fig. 5.11. We model the system by assigning a

potential VM to the dot and potentials VL and VR to the left and at the right
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5.14 Peltier heating/cooling

reservoirs, respectively. Let us consider the situation where the voltage drops

VL−VM and VM−VR are much smaller than temperature Θ and suppose that

the dot is large enough to consider it as an additional reservoir where the

equilibrium distribution function for electrons is established.

Applying a bias voltage, current will start to flow. As we will show below,

depending on the properties of the leads the dot can be both heated or cooled

by current passing; this phenomena is called Peltier heating/cooling. The

idea is that the heat current IQ,LM from the left reservoir to the dot does not

cancel with contribution IQ,MR originating from the heat flow from the center

to the right reservoir. To be more specific, we proceed with calculating

IQ,MR =
2

h

∞∫

−∞

(E − µ)

{
1

e(E−µ+eVM)/Θ + 1
− 1

e(E−µ+eVR)/Θ + 1
−

}
TR(E)dE

=
2eVMR

h

∫
(E − µ)2 ∂n

∂E

∂TR

∂E
dE, (5.80)

and after expanding TR(E) we obtain

IQ,MR = 2eVMR

∂TR

∂E

∣∣∣∣
E=µ

2Θ2

+∞∫

0

ζ2∂n

∂ζ
dζ = −2π2

3

eVMRk
2
Bϑ

2

h

∂TR

∂E

∣∣∣∣
E=µ

, (5.81)

where VMR = VM−VR < 0. We see, if ∂TR/∂E 6= 0, the answer is proportional

to VMR. Here, we have omitted the part proportional to V 2
MR, which gives the

contribution from the Joule heat.

Consider now the situation where in the left point contact is in the plateau

regime with ∂TL/∂E = 0 and only quadratic in VLM terms will gives a con-

tribution to IQ,LM; if the current and VLM small we neglect this quadratic

terms and IQ,LM = 0. Let us calculate the “speed” of cooling of the dot

−∂QM/∂t = IQ,MR where QM is a heat energy of the dot,

− ∂QM

∂t
= −2π2

3

eVMRk
2
Bϑ

2

h

∂T

∂E
> 0; (5.82)

note that ∂QM/∂t is linear in current I = (2e2/h)VMRT (µ) driven through

the dot.

Now let us assume that transparency at the left is unity TL = 1 and the

right one is described by TR(E) = 1/(e2π(E−µ)/~Γ+1). Noting that T (µ) = 1/2

and ∂TR/∂E|E=µ = π/2~Ω we obtain from (5.82)

− ∂QM

∂t
= −π

3

3

k2
Bϑ

2

e~Γ
I. (5.83)
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~Ω

f(x)

A(x, t) = f(x) cos Ωt

µ

Figure 5.12: Photon-assisted tunneling.

The condition that the Peltier cooling should be stronger than Joule heating

IVB ¿
∣∣∣∣
dQM

dt

∣∣∣∣ (5.84)

should be satisfied in order that the dot is cooled in this setup; therefore, the

bias voltage obeys the condition

|VB| ¿ π3

3

k2
Bϑ

2

e~Γ
. (5.85)

5.15 Photon-assisted tunneling

We consider the situation of applying an alternating electric potential on a

1D Fermi gas. The electric field can be modeled by an time-dependent vector

potential along x of the form

A(x, t) = f(x) sin Ωt. (5.86)

via E(t) = −∂tA(x, t)/c. Suppose that f(x) is a smooth function such that

q = |∂f/∂x| ¿ kF and the frequency Ω is smaller than inverted time of flight

through the region where the field A(x, t) is applied Ω ¿ qvF, cf Fig. 5.12. In

this case, we can use the linear spectrum approximation for the interaction

between the electrons and the electric field and obtain

ΨL(x, t) = e2πi(Φ/Φ0) sin{Ω[t−(x−x0)/vF]}+ikx−i(~k2/2m)t, (5.87)

for the left-incoming Lippmann-Schwinger state, cf. Eq. (2.22), where Φ0 =

hc/e, Φ =
∫∞
−∞ f(x)dx. Using the Jacobi-Anger identity

eiz sin θ =
∞∑

n=−∞
Jn(z)einθ (5.88)
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for the Bessel functions of the first kind Jn(z), we rewrite (5.87) as

ΨL(x, t) = eikx−i(~k2/2m)t

∞∑
n=−∞

Jn

(
2π

Φ

Φ0

)
einΩ[t−(x−x0)/vF]; (5.89)

note that due to the applied field A(x, t) (5.86) the plane wave which inci-

dent from the left is split into a coherent superposition of the plane waves

propagating in the same direction (no back-reflection) but with new energies

shifted by n~Ω (with the amplitude J−n). In a ballistic wire without ap-

plied electric field, the net current from each state is the same in the present

approximation. Therefore no current flows without an additional scattering

potential.

Consider now how the left-incoming Lippmann-Schwinger state (5.89) will

behave when it impinges on a double-barrier potential. Suppose there is only

one well-defined resonance at E1 which is above EF, E1 > EF. Applying a

small time-independent voltage bias eVB ¿ E1−EF, almost no current flows.

On the other hand, applying an alternating voltage

VΩ(t) = VΩ cos Ωt, (5.90)

which is modeled by an alternating vector potential A(x, t) with

VΩ =
hΩ

e

Φ

Φ0

. (5.91)

we chose the frequency Ω to be almost resonant, ~Ω ≈ E1−EF. The current

through the resonance is then provided by the component of wave function

J1(2πΦ/Φ0)e
ikFx−iEFt/~−iΩ[t−(x−x0)/vF] (5.92)

proportional to J1(2πΦ/Φ0). All other components with n > 1 are reflected,

since the condition eVΩ ¿ E1−EF at ~Ω ≈ E1−EF implies that 2πΦ/Φ0 ¿ 1,

see Eq (5.89), and therefore Jn>1(2πΦ/Φ0) ¿ 1. To observe “multi-photon”

processes with nÀ 1, we need to have 2πΦ/Φ0 À 1, cf. Fig. 5.13; in order to

still obey the relation VΩ < E1 −EF, we keep 2πΦ/Φ0 < (E1 −EF)/~Ω ≈ n.

The general formula for the current is given by

I = −2e

h

EF∫

0

dE

{ ∑

n,n′
Jn

(
2π

Φ

Φ0

)
Jn′

(
2π

Φ

Φ0

)
ei(n−n′)Ω[t−(x−x0)/vF]

× t∗(E − n′~Ω)t(E − n~Ω)− T (E)

}
. (5.93)
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E1

m0~Ω ~Ω

µ

Figure 5.13: Multi-photon case. The number of photons with energy ~Ω is

m0 = b(E1 − EF)/~Ωc+ 1.

where we can discuss the one and many photons cases in more details; here

the second term proportional T (E) originates from the electrons incoming

from the right which are scattered at their original energies. The first term,

originates from electrons incoming from the left which are promoted to new

energies separated by n~Ω by the alternating voltage applied. Without time-

dependent voltage, the two contributions cancel and no current flows.

Consider the situation of a double barrier with sharp resonances. We

want to calculate the component of the current which constant in time (dc-

component, averaged over time),

I = −2e

h

EF∫

0

dE

{ ∞∑
n=−∞

J2
n

(
2π

Φ

Φ0

)
T (E − n~Ω)− T (E)

}
. (5.94)

The transparency T (E) in this case is given by

T (E) =
∞∑

m=1

Γ2
m

(E − Em)2 + Γ2
m

Tm, (5.95)

where sum runs over all resonances and Tm is the transmission probability at

the mth resonance with Tm ≤ 1. The first resonance m = 1 gives the largest

contribution to the current and we estimate

I = −2e

h
J2

1

(
2π

Φ

Φ0

)
πΓ1T1. (5.96)

for the one-photon case.

In multi-photon case (the number of photons is m0 = b(E−EF)/~Ωc+1)

the current is given by

I = −2e

h

∞∑
n=m0

J2
n

(
2π

Φ

Φ0

)
πΓ1T1, (5.97)
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5.16 Oscillating bottom in the dot

E1

(a) (b)

E3 − E2 = ~Ω

~Ω

2~Ω

µ

µ
E1

E2

E3

~Ω
2~Ω

Figure 5.14: Special situations for the photon-assisted tunneling.

where, we assumed that J2
n at n = EF/~Ω is already negligible. The above

appearance of the constant current as a response to the alternating field

corresponds to so-called “photovoltaic” effect [7]. Note that this sign of the

induced current will be the opposite if we apply field from the right. Further

possible cases (see e.g. Fig. 5.14(a,b)) can be analyzed in the similar way.

5.16 Oscillating bottom in the dot

Another situation with a time-dependent driving is when we modulate the

bottom of a dot with a time dependent voltage (scalar potential), cf Fig. 5.15.

To calculate the transmission amplitude, we use the same trick as in the

Fabry-Perot interferometer. The new element is that during the presence of

the electron in the dot, from tin until time tout, the electron accumulate an

extra phase

φ(tin, tout) = e

tout∫

tin

U(t) dt/~. (5.98)

For a plane wave with wave vector k incoming from the left, the transmitted

part is given by

ΨL = eik(x−vFt) t1t2

{
e−iφ(t−x/vF−L/vF,t−x/vF)

+ r1r2e
2ikL−iφ(t−x/vF−3L/vF,t−x/vF) + . . .

}

= eik(x−vFt) t1t2

∞∑
n=0

(r1r2)
ne2nikL−iφ(t−x/vF−(2n+1)L/vF,t−x/vF). (5.99)

In the case when the spacing between the resonances is large, we can sub-
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EF − eV/2U0

Figure 5.15: Oscillating bottom in the dot.

stitute the sum by an integral over n

ΨL = eikx−ikvFt t1t2

∞∫

0

dn (r1r2)
ne2nikL−iφ(t−x/vF−(2n+1)L/vF,t−x/vF). (5.100)

For sharp resonances with |T1,2| ¿ 1, we can expand the product

(r1r2)
n = e2inχr+n log |r1r2| = e2inχr−n(T1+T2)/2,

with χr = (χr
1 + χr

2)/2 and χr
n = arg rk as before. Inserting this relation into

(5.100), we obtain

ΨL = eikx−ikvFt t1t2

∞∫

0

dn ei2nδkL−n(T1+T2)/2−iφ(t−x/vF−(2n+1)L/vF,t−x/vF),

(5.101)

where δk = k − km, km is the position of the m-th resonance with 2kmL +

2χr = 2πm. Using the relation n(T1 + T2)/2 = 2πnΓn/∆n [we use the

expression for resonance width Γn = (∆n/2π)(T1 + T2)/2] and performing

the substitution s = 2nL/vF in the integral yields

ΨL = eikx−ikvFt t1t2
∆n

h

∞∫

0

ds eiδkvFs−Γs/~−iφ(t−x/vF−L/vF−s,t−x/vF), (5.102)

note that if U(t) is slow, we can omit L/vF in this formula.

For the situation when the band-bottom is harmonically modulated,

U = U0 cos Ωt (5.103)

we can expand the exponent into Bessel functions as before,

e−iφ(t−x/vF−L/vF−s,t−x/vF) = e−i(eU0/~Ω)[sin Ω(t−x/vF)−sinΩ(t−x/vF−s)] (5.104)

=
∑

l,l′
Jl

(eU0

~Ω

)
Jl′

(eU0

~Ω

)
e−il′Ω(t−x/vF)+ilΩ(t−x/vF−s).
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Performing the integration over s in (5.102) gives

ΨL = eikx−ikvFt t1t2
∑

l,l′

∆n

h
Jl

(eU0

~Ω

)
Jl′

(eU0

~Ω

) −1

iδkvF − Γ/~− ilΩ
e−i(l−l′)Ω(t−x/vF).

(5.105)

This result is quite similar to the case of photon-assisted tunneling, but now

both left and right going states have transformed transmission amplitudes

and there is no net current flow without bias, i.e., for µL = µR. Additionally,

there are new phase factor in (5.104),

e−i(eU0/~Ω) sinΩ(t−x/vF), (5.106)

as compared to the previous section. The formula (5.105) can be interpreted

as if the electron first gets some energy quantum n~Ω, then tunnels through

the double barrier with this additional energy, and afterwards obtaining (or

loosing) an extra amount of the energy. Therefore, we do not know from the

energy of the outgoing wave at which energy it was tunneling.
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Chapter 6

Scattering matrix approach:

the second-quantized formalism

6.1 Second-quantized formalism

In this chapter, we rederive Landauer’s formula for mesoscopic conductors in

the second-quantized formalism. The second quantized formalism replaces

the state of one electron with the wave function ϕk(x) by a creation operator

ĉ†k acting on the vacuum |0〉. Its use is in the lies in the fact that for many-

body states the symmetrization is already built in. As an example consider

the many-body state of N electrons described by a Slater determinant

Ψ̂(x1, . . . , xN) =
1√
N

∣∣∣∣∣∣∣

ϕ1(x1) · · · ϕN(x1)
...

. . .
...

ϕ1(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣
(6.1)

in the first-quantized description. In the second-quantized formalism, this

state is replaced by product of the corresponding creation operators

ĉ†1 . . . ĉ
†
N |0〉 (6.2)

on the vacuum state |0〉. The anti-symmetry of the Slater-determinant is

mapped on the fact that the creation operators ĉ†k anti-commute with each

other.

In the second quantized formalism, we define current density operator as

Ĵ = − ie~
2m

[
(∇Ψ̂†)Ψ̂− Ψ̂†∇Ψ̂

]
(6.3)
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with the help of the field operators

Ψ̂(x, r⊥) =

∫
dk

2π

N∑
n=1

ĉn,k ϕn,k(x, r⊥), (6.4)

where r⊥ is a vector in the cross-section. One particle wave functions ϕn,k

represents itself the orthonormal set

∫
dx dr⊥ ϕ∗n′,k′(r)ϕn,k(r) = 2πδn′n δ(k

′ − k). (6.5)

and satisfy Schrödinger equation

Ĥϕn,k = En(k)ϕn,k, (6.6)

which also gives the dispersion En(k). The normalization condition for an-

nihilation ĉn,k and creation ĉ†n,k operators then

{ĉ†n′,k′ ĉn,k} = ĉ†n′,k′ ĉn,k + ĉn,kĉ
†
n′,k′ = 2πδn′n δ(k

′ − k) (6.7)

The total current operator can be found by integrating the current density

Ĵ over cross-section

Î =

∫
dr⊥Ĵ(x, r⊥). (6.8)

The field operators Ψ̂ are defined through creation and annihilation operators

for the Lippmann-Schwinger scattering states (see formulas (3.6) and (3.7))

which form a complete orthonormal set of eigenstates of the Hamiltonian Ĥ.

Note that normalization in the formulas (6.5) and (6.7) should be consistent

one with the other. One can redefine the normalization for the wave func-

tions, e.g., to have δ-function in energy in the right hand side of formula (6.5),

if one also redefines Eq. (6.7) to have the same δ-function on the right hand

side.

We want to provide an explanation while the Lippmann-Schwinger scat-

tering states are a complete orthonormal set of states in order to use them

in the second-quantized formalism1. In order to prove that the Lippmann-

Schwinger states are orthonormal, we can start by turning off the interac-

tion potential where the solution to the Schrödinger equation is given by

1Note that Ya. Blanter and M. Büttiker in the review [1] use another set of states
which are not orthonormal.
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plain wave incoming from the left and from the right which form a com-

plete orthonormal set. We then adiabatically switch on the scattering po-

tential and the plain waves convert into the Lippmann-Schwinger states.

Given this time-dependent Hamiltonian Ĥ(t) (no-interaction for t = 0 and

then adiabatically turning on the interaction potential), the evolution ma-

trix Ŝ(t) is still unitary. Starting with a orthonormal set of states |α(0)〉
with 〈α′(0)|α(0)〉 = δαα′ (e.g., plain waves), we will end up with a ba-

sis set which obeys the same orthonormality condition |α(t)〉 = Ŝ(t)|α(0)〉,
〈α′(t)|α(t)〉 = 〈α′(0)|Ŝ†(t)Ŝ(t)|α(0)〉 = δαα′ .

For pure state |α〉 the average current is given by

I = 〈α|Î|α〉. (6.9)

If a state described by density matrix ρ̂ (an incoherent superposition of pure

states), the expectation value of the current is given by the average

I =
∑

α,β

〈α|ρ̂|β〉〈β|Î|α〉 = Tr{ρ̂ Î}. (6.10)

where the current operator is multiplied with the density matrix and a trace

is performed. For a system with Hamiltonian Ĥ at finite temperature ϑ and

with chemical potential µ, the density matrix is given by

ρ̂ = e−(Ĥ−µN̂)/kBϑ; (6.11)

experimentally average of the time2.

It was suggested by Landauer that reservoirs are completely independent

and that therefore the density matrices give independent contribution to the

current. The total density matrix of the system can be written as the product

of the density matrices describing left and right going electrons (in a two lead

geometry). For a multilead geometry, each reservoir (which we label below

by the Greek indices α and β) injects electrons into the corresponding lead

independent on each other. The overall density matrix is then a product

of all the individual density matrices. For a two lead device with reservoirs

described by the density matrices,

ρ̂L = e−
P

α ĉ†L,αĉL,α(εα−µL)/kBϑL , ρ̂R = e−
P

α ĉ†R,αĉR,α(εα−µR)/kBϑR . (6.12)

2The believe that this average will coincide with the average over the time is the matter
of ergodicity hypothesis. Note that only average over the time is experimentally accessible.
So we calculate one value, measure another and ergodicity hypothesis promise us that the
results do coincide. Yet it is still a hypothesis without rigorous proof.
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the total density matrix has the form

ρ = e−
P

α{ĉ†L,αĉL,α(εα−µL)−ĉ†R,αĉR,α(εα−µR)}/kBϑ. (6.13)

Given the density matrix and knowing the form of the field operators Ψ̂ (the

basis in which the density matrix is given), it is easy obtain all the averages

using 〈ĉ†
L,α′ ĉL,α〉 = δα′αnα,L and 〈ĉ†

R,α′ ĉR,α〉 = δα′αnα,R
3. The Fermi-Dirac

distribution function nα,L and nα,R represent occupation numbers in left and

right reservoir

nα,L =
1

e(εα−µL)/kBϑ + 1
, nα,R =

1

e(εα−µR)/kBϑ + 1
. (6.14)

assuming the situation when temperatures of the left and of the right elec-

trons are equal ϑL = ϑR = ϑ; otherwise, ϑL/R has to be inserted in nα,L/R

respectively.

Using this form of the density matrix, we will end up with the expression

for the current

Iβ = −2e

h

∑
α

∑

j,l

∫
dE [nβ(ε)− nα(E)]Tβα,lj(E). (6.15)

depending on the difference in the occupation function.

In 80th a lot of effort was devoted to justify the Landauer approach with

the help of Kubo formula. We will show that the Landauer approach can be

justified with the “poor man Keldysh technique” [2]. The Keldysh Green’s

function

iG−+(r, r′) = Tr{ρ̂Ψ̂†(r′)Ψ̂(r)} = 〈Ψ̂†(r′)Ψ̂(r)〉 (6.16)

is an analog of the distribution function f(q, p, t) in the classical kinetic

equation. When we are solving the classical kinetic equation (Boltzmann)

the boundary condition are that far away the distribution function should

coincide with the equilibrium distribution function. The Keldysh Green’s

function has to satisfy similar boundary conditions at infinity, i.e., in the

reservoirs

G−+(r, r′)
∣∣
r,r′∈L(R)

= G−+

eq (r, r′), (6.17)

where r, r′ ∈ L(R) denote both r and r′ somewhere far in the left or right

reservoirs, but never one of the in the left and the other in the right reservoir.

3By δα′α, we denote the Kronecker symbol when α is a discrete parameter and 2πδ(α′−
α) when α is continuous. Here δ(x) is a usual Dirac δ-function.
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The current can be express via Keldysh Green’s function in the following

way (note that we already used the average over Ψ̂†(r)Ψ̂(r′) for calculating

current):

Ĵ =
e~
2m

[
∂

∂r′
− ∂

∂r

]
G−+(r, r′)

∣∣∣∣∣
r=r′

. (6.18)

Suppose now that we have quasi-1D quantum point contact, with the few

open channels. Then far in the reservoir most of the electrons originate from

the same reservoir and only few amount from some other reservoir. So, as

soon as we have the small ratio of the number of open channels in quantum

point contact to the number of open channels in the reservoir

δf ∼ Nwire

Nreservoir

. (6.19)

Landauer’s approach is justified, and the distribution function is almost equi-

librium at the given µα.

6.2 Heisenberg representations of the opera-

tors

Usually in the Schrödinger representation of the operators of physical quan-

tities L̂ does not depend on time. The average value of the operator L̂ in the

state |α(t)〉 is

〈L̂(t)〉 = 〈α(t)|L̂|α(t)〉 (6.20)

(here and below we omit the r-dependence). Its time-dependence sit in the

state |α(t)〉. The evolution of the state is described by

|α(t)〉 = Ŝ†(t)|α〉. (6.21)

Here |α〉 ≡ |α(0)〉 and the evolution operator is

Ŝ(t) = e−iEkt/~, (6.22)

where Ek is a spectrum of the Hamiltonian of the system Ĥ. We can rewrite

the formula (6.20) as

〈L̂(t)〉 = 〈α|Ŝ(t)L̂Ŝ†(t)|α〉. (6.23)
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We can see to this relation as to the new operator

L̂(t) = Ŝ(t)L̂Ŝ†(t) (6.24)

depending on time averaged over the initial state |α〉. This notation is called

Heisenberg representation of the operator.

Note that Heisenberg representation is valid for positive and negative t.

6.3 Interaction representation

Let us consider system with Hamiltonian

Ĥ = Ĥ0 + Ĥint. (6.25)

We assume Ĥ0 to be noninteracting part and that we know everything about

the system with this Hamiltonian. The time-dependent wave function

|α(t)〉 = ei[Ĥ0+Ĥint]t/~|α〉 (6.26)

should satisfy time-dependent Schrödinger equation

i~
∂

∂t
|α(t)〉 = [Ĥ0 + Ĥint]|α(t)〉. (6.27)

The interacting Ĥint(t) part we will consider as a perturbation. We will use

the Heisenberg representation for the interaction part Ĥint(t) = eiĤ0t/~Ĥinte
−iĤ0t/~.

The Eq. (6.26) can be rewritten as

|α(t)〉 = e−iĤ0t/~Ŝ|α〉 (6.28)

Here the Ŝ-matrix according for the evolution due to interacting part is given

by the time-ordered exponent

Ŝ = Te−(i/~)
R t
0 dτĤint(τ) =

∞∑
n=0

(
− i

~

)n
t∫

0

dτ1 Ĥint(τ1)

×
τ1∫

0

dτ2 Ĥint(τ2) . . .

τn−1∫

0

dτn Ĥint(τn). (6.29)

with ordered time 0 < τn < . . . < τ1 < t. The inverse chronological exponent

T̃ and defined by the same relation but with 0 > τn > . . . > τ1 > t. Note

that
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Let us proof the relation (6.28); we should check does such a state |α(t)〉
satisfy (6.27). Lets do that

i~
∂

∂t
|α(t)〉 = Ĥ0|α(t)〉+ e−iĤ0t/~eiĤ0t/~e−iĤ0t/~Te−(i/~)

R t
0 dτĤint(τ)|α〉 =

= [Ĥ0 + Ĥint]|α(t)〉. (6.30)

The density matrix in interaction representation is defined in a similar

way

ρ̂(t) = e−iĤ0t/~Ŝρ̂0Ŝ
†eiĤ0t/~ =

= e−iĤ0t/~Te−(i/~)
R t
0 dτĤint(τ)ρ̂0T̃e

(i/~)
R t
0 dτĤint(τ)eiĤ0t/~. (6.31)

where ρ̂0 = ρ̂(0).

The average of current operator is4

I(t) ≡ 〈Î(t)〉 = Tr{ρ̂(t)Î} =

= Tr
{
Te−(i/~)

R t
0 dτĤint(τ) ρ̂0 T̃e(i/~)

R t
0 dτĤint(τ)eiĤ0t/~Îe−iĤ0t/~}. (6.32)

We can rewrite this expression, using current operator in Heisenberg repre-

sentation

I(t) = Tr
{
ρ̂0 T̃e(i/~)

R t
0 dτĤint(τ)Î(t) Te−(i/~)

R t
0 dτĤint(τ)

}
. (6.33)

6.4 Change of the current due to electron-

electron interaction

In this chapter, we want to calculate the current through a symmetric quan-

tum dot where electrons interacts if they are inside the confined area. The

dot we model with the symmetric double of the length L barrier with trans-

mission and reflection amplitudes t and r with rectangular interaction in

between (each barrier has transmission and reflection amplitudes t1 and r1).

The interaction Hamiltonian is

Ĥint =
1

2

∑

σ′,σ

∞∫

−∞

dx

∞∫

−∞

dx′ Ψ̂†σ(x, t)Ψ̂†σ′(x
′, t)U(x, x′)Ψ̂σ′(x

′, t)Ψ̂σ(x, t) (6.34)

4Here and in the next formula we use the property of cyclic shift of operators in trace
does not change its value, Tr{ÂB̂Ĉ} = Tr{B̂ĈÂ}.
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6.4 Change of the current due to electron-electron interaction

with the interaction potential

U(x, x′) = U0Θ(L/2− |x|)Θ(L/2− |x′|); (6.35)

which is nonzero on the square of dimension L × L,5 and σ the spin index,

σ =↑, ↓. The field operators in the interaction representation include the

trivial time-dependence

Ψ̂σ(x, t) =
∑

α,k

ĉασkϕαk(x)e
−iEkt/~ (6.36)

here, α distinguished between the left and right scattering states, α = L,R).

In according with (6.33) the current is defined by the trace

I = Tr{ρ̂0Ŝ
†Î Ŝ}. (6.37)

We are interested in the correction to the current δI due to the interaction

(6.34) in first order perturbation theory. Expanding the exponent in Ŝ,

Eq. (6.37) yields

δÎ(t) =
i

~

[
Î ,

t∫

−∞

dτ Ĥint(τ)

]
; δI(t) = Tr{ρ̂δÎ(t)} (6.38)

where t is the time where the current is measured. In order to be in the

stationary regime, we let t→∞ and first perform the integration over time

in (6.34)

∞∫

−∞

dτ

~
Ĥint(τ) = π

∑

σ′,σ
k′,q′,k,q
α,β,θ,δ

Uαk,βq′,θk,δq ĉ
†
ασk′ ĉ

†
βσ′q′ ĉθσ′kĉδσqδ(Ek′ + Eq′ − Ek − Eq),

with the interaction matrix elements

Uαk,βq′,θk,δq = U0

L/2∫

−L/2

dx

L/2∫

−L/2

dx′ϕ∗αk′(x)ϕ
∗
βq′(x

′)ϕθk(x
′)ϕδq(x). (6.39)

Let us estimate U using the fact that wave function between two barriers

near the resonance is coincides with the wave function in the box. For the

5We use the Heaviside step function Θ(x); Θ(x < 0) = 0, Θ(x > 0) = 1.
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Scattering matrix approach: the second-quantized formalism

first resonance, we obtain 6

ϕ
(1)
L/R,k(x) ≈

2tk
t1

cos
πx

L
. (6.40)

for both the left and the right scattering state. As the current has only an

appreciable contribution close to the resonances, we can substitute (6.40)

into U assuming that only the first resonance contributes to the transport.

We obtain

Uαk,βq′,θk,δq = U0
4L2

T 2
1

t∗k′t
∗
q′tktq. (6.41)

Inserting U into the expression for the time integrated Hamiltonian and

replacing the summation by an integration yields

∞∫

−∞

dτ

~
Ĥint(τ) = πU0

4L2

T 2
1

∑

σ′,σ
α,β,θ,δ

∞∫

0

dk′ dq′ dk dq
(2π)4

ĉ†ασk′ ĉ
†
βσ′q′ ĉθσ′kĉδσq

× t∗k′t
∗
q′tktqδ(Ek′ + Eq′ − Ek − Eq). (6.42)

In a next step, we express current operator Î in terms of Lippmann-Schwinger

scattering states. We substitute to the formula (6.3) the correspondent field

operators (6.4)7 and choose the position far at the right of the barrier. The

asymptotic form is given by

Ψ̂(x) =
∑

k

[
ĉLσktke

ikx + ĉRσk(rke
ikx + e−ikx)

]
. (6.43)

For simplicity assume symmetric barrier and zero magnetic field. We ex-

change the summation to an integration and obtain expression for current

operator

Î =− e~
2m

∑
σ

∞∫

0

dk′dk
(2π)2

{
ĉ†

Lσk′ ĉLσk(k
′ + k)t∗k′tk′e

i(k−k′)x

+ ĉ†
Lσk′ ĉRσk

[
k′t∗k′e

−ik′x(rke
ikx + e−ikx) + kt∗k′e

−ik′x(rke
ikx − e−ikx)

]

+ ĉ†
Rσk′ ĉLσk

[
k′(r∗k′e

−ik′x − eik′x)tke
ikx + k(r∗k′e

−ik′x + eik′x)tke
ikx

]

+ ĉ†
Rσk′ ĉRσk

[
k′(r∗k′e

−ik′x − eik′x(rke
ikx + e−ikx)

+ k(r∗k′e
−ik′x + eik′x)(rke

ikx − e−ikx)
]}
. (6.44)

6The wave function near e.g. second resonance is ϕ
(2)
L/R,k(x) ≈ ∓ 2itk

t1
sin 2πx

L .
7We already performed the integration over r⊥.
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6.4 Change of the current due to electron-electron interaction

Averaging of the current operator over the non-interacting density matrix

gives the Landauer formula: the contribution from off-diagonal terms in L/R

space vanishes. Furthermore, using the fact that 〈ĉ†ασ′k′ ĉβσk〉 = nα(k)δαβδσ′σδk′k
[where for continuos k, δk′k ≡ 2πδ(k′ − k)] yields

I = −e~
m

∞∫

0

dk

2π
k
{
nL(k)Tk − nR(k)[1−Rk]

}

= −e~
m

∞∫

0

dk

2π
kTk[nL(k)− nR(k)]; (6.45)

after the substitution k =
√

2mE/~, Landauer’s formula is obtained.

needs to be corrected from here on

The contributions to δI is from current off-diagonal terms in L/R space.

Let us define space part of current operator as F (p′, p) = (ik′eik′x−ik′r∗k′e−ik′x)tke
ikx−

(eik′x+r∗k′e
−ik′x)iktke

ikx andG(p′, p) = (e−ikx+rke
ikx)−(eik′x+r∗k′e

−ik′x)(−ike−ikx+

ikrke
ikx). We calculate one of these terms as example, cioe term in Eq. (6.42)

with α, β, θ, δ = L,R,L,L. The average value of the operators is

〈ĉ†
Lσk′ ĉ

†
Rσ′q′ ĉLσ′kĉLσq ĉ

†
Lσ′′p′ ĉRσ′′p〉 − 〈ĉ†Lσ′′p′ ĉRσ′′pĉ

†
Lσk′ ĉ

†
Rσ′q′ ĉLσ′kĉLσq〉 =

= −〈ĉ†
Rσ′q′ ĉRσ′′p〉〈ĉ†Lσk′ ĉLσ′kĉLσq ĉ

†
Lσ′′p′〉+ 〈ĉ

Rσ′′pĉ
†
Rσ′q′〉〈ĉ†Lσ′′p′ ĉ

†
Lσk′ ĉLσ′kĉLσq〉 =

= −〈ĉ†
Rσ′q′ ĉRσ′′p〉

[
〈ĉ†

Lσk′ ĉLσ′k〉〈ĉLσq ĉ
†
Lσ′′p′〉 − 〈ĉ†Lσk′ ĉLσq〉〈ĉLσ′kĉ

†
Lσ′′p′〉

]
+

+ 〈ĉ
Rσ′′pĉ

†
Rσ′q′〉

[
− 〈ĉ†

Lσ′′p′ ĉLσ′k〉〈ĉ†Lσk′ ĉLσq〉+ 〈ĉ†
Lσ′′p′ ĉLσq〉〈ĉ†Lσk′ ĉLσ′k〉

]
=

= −nRpδσ′σ′′δq′p

[
1− nLkδσσ′δk′k(1− nLq)δσσ′′δqp′−

− nLqδσσδk′q(1− nLk)δσ′σ′′δkp′

]
+

+ (1− nRp)δσ′′σ′δpq′

[
− nLkδσ′′σ′δp′knLqδσσδk′q+

+ nLqδσ′′σδp′qnLkδσσ′δk′k

]
(6.46)

Making summation over spin indices and taking into account that∑

σ,σ′,σ′′
δσσ′δσ′σ′′δσ′′σ = 2 and

∑

σ,σ′,σ′′
δσσδσ′σ′′δσ′′σ′ = 4

we rewrite (6.46) as

− nRpδq′p
[
2nLkδk′k(1− nLq)δqp′ − 4nLqδk′q(1− nLk)δkp′

]
+

+ (1− nRp)δpq′
[− 4δp′kδk′q + 2δp′qδk′k

]
nLknLq. (6.47)
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Scattering matrix approach: the second-quantized formalism

For continuous variables k and k′ delta function δk′k ≡ 2πδ(k′ − k). Mak-

ing integration over primes variables and taking into account δ-function of

energies δ(k′2 + q′2 − k2 − q2) and F (p′, p) we have

(2π)3
{
−nRp

[
2nLk(1−nLq)δ(p

2−q2)F (q, p)−4nLq(1−nLk)δ(p
2−k2)F (k, p)

]
+

+ (1− nRp)
[− 4δ(p2 − k2)F (k, p) + 2δ(p2 − q2)F (q, p)

]
nLknLq

}
. (6.48)

Integration over p gives

(2π)3
{
− 2nRqnLk(1− nLq)

F (q, q)

2q
+ 4nRknLq(1− nLk)

F (k, k)

2k
−

− 4(1− nRk)nLknLq
F (k, k)

2k
+ 2(1− nRq)nLknLq

F (q, q)

2q

}
(6.49)

For equal arguments F (q, q) = −2iqt∗qrq and G(q, q) = −2iqtqr
∗
q and we

obtain

− it∗qrq(2π)3
{
− 2nRqnLk(1− nLq) + 4nRqnLk(1− nLq)−

− 4(1− nRq)nLqnLk + 2(1− nRq)nLknLq

}
=

= −it∗qrq(2π)32nLk[nRq − nLq]. (6.50)

The other terms are similar to this, summing up over all values of α, β, θ, δ

we obtain the expression for all terms. Using the unitarity of the scattering

matrix, i.e. t∗qrq = −tqr∗q we obtain the expression for correction to the

current

δI =
πU0

2

4L2

T 2
1

(
− ie~

2m

)
2m

~2

∞∫

0

dk dq

(2π)3
TkTq(−it∗qrq) 8(nLk + nRk)(nLq − nRq).

(6.51)

Simplifying it we obtain final result

δI = −2e

h

8πU0L
2

T 2
1

∞∫

0

dk dq

(2π)2
TkTq t

∗
qrq(nLk + nRk)(nLq − nRq). (6.52)

The integration can be easily made, but we do not do that.
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6.5 Time-dependent interaction

6.5 Time-dependent interaction

Let us define the density matrix ρ̂ of the system with the time-dependent

Hamiltonian

Ĥ(t) = Ĥ0(t) + Ĥint(t) (6.53)

by the usual equation

i~
∂ρ̂

∂t
= [Ĥint, ρ̂] ≡ Ĥintρ̂− ρ̂Ĥint (6.54)

with the boundary condition

ρ̂0 = ρ̂(−∞) = e[F0−Ĥ0(−∞)]/kBϑ, (6.55)

here F0 is the initial free energy. The noninteracting term represents the

energy of electrons in the external field with scalar V = V (t) and A = A(t)

vector potential

Ĥ0(t) =

∫
dr Ψ̂†0(t)

[
E

(
− i∇+

e

~c
A

)
− eV

]
Ψ̂0(t), (6.56)

where E(k) is a dispersion relation of the electrons. The field operators Ψ̂†0(t)
and Ψ̂0(t) are defined in the following manner: let ϕk(t) be the complete

system of functions determined by the equation
[
E

(
− i∇+

e

~c
A

)
− eV − i~

∂

∂t

]
ϕk = 0 (6.57)

and boundary condition

ϕk(t) → eikr−iE(k)t/~ as t→ −∞, (6.58)

where we consider the external field the be switched off [V → 0 and A → 0]

at t→ −∞. Than the field operators Ψ̂0 and Ψ̂†0 are defined by the relations

Ψ̂(t) =
∑

k

ĉkϕk(t) (6.59)

and

Ψ̂†(t) =
∑

k

ĉ†kϕ
∗
k(t) (6.60)

where ĉk, ĉ
†
k are usual Fermi annihilation and creation operators with com-

mutation realtion

[ĉ†k, ĉk′ ] ≡ ĉ†kĉk′ + ĉk′ ĉ
†
k = δkk′ . (6.61)
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Utilizing the fact that the functions ϕk(t) form at arbitrary instant of time a

complete orthogonal system and formulas (6.59), (6.60), and (6.61), it can

be easily show that for coincident times we have

[Ψ̂†k(t), Ψ̂k(t)] = δ(r− r′). (6.62)

and in virtue of this operators Ψ̂k(t) satisfy the free equation of motion

i~
∂Ψ̂k

∂t
= {Ψ̂k, Ĥ0} ≡ Ψ̂kĤ0 − Ĥ0Ψk. (6.63)

i.e., we have from the outset defined the field operators in the interaction

representation.

We note that the operator Ĥ0(t) differs from the Schrödinger representa-

tion and in the interaction representation in contrast to the usual case, when

the external fields are independent of the time. Having in mind such a defini-

tion of the field operators we have from the outset written Eq. (6.54). In the

interaction representation we leaving it only the operator for the interaction

energy Ĥint which, for the sake of definiteness, we shall in future write in the

form

Ĥint = g

∫
dr Ψ̂†k(t)Ψ̂k(t)ϕ(t). (6.64)

where g is a dimensionless coupling constant. Such expression describes

interaction between electrons and phonons in solids, and also can be utilized

to describe Coulomb interaction of charged particles if we write a separate

equation for the Coulomb field.

Eq. (6.54) for the density matrix ρ̂(t) can be formally solved by introduc-

ing S-matrix

Ŝ(t) ≡ Ŝ(t,−∞) = T e−(i/~)
R t
−∞ Ĥint(τ) dτ , (6.65)

which satisfies the relation

i~
∂Ŝ(t)

∂t
= Ĥint(t)Ŝ(t). (6.66)

Note that (6.65) is a formal solution of the differential equation (6.66). The

symbol T in (6.65) denoted a time-ordered product defined in the usual

manner. Than we have

ρ̂(t) = Ŝ(t)ρ̂(t)Ŝ†(t) = Ŝ(t)ρ̂(t)Ŝ(t). (6.67)
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The density matrix defined in this manner depends explicitly on the time.

The average value of an arbitrary operator L̂0(t) at time t has the form

〈L̂0(t)〉 = Tr{ρ̂(t)L̂0(t)}, (6.68)

where the subscript 0 in the operator L̂0(t) shows that the operator is taken

in interaction representation, i.e. its time dependence is determined by the

free equation of motion in the external field

i~
∂L̂0(t)

∂t
= {L̂0, Ĥ0(t)}, (6.69)

since the density matrix ρ̂(t) itself was defined in the interaction representa-

tion.
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Chapter 7

Noise review

7.1 Introduction

This chapter will provide a general overview about noise. First, we will

discuss different types of classical noise together with general feature of noise.

Then, we will apply a quantum approach to calculate noise. Probably, the

first study about noise was done by Robert Brown in the context of Brownian

motion [1] which was later explained by Albert Einstein as being due to

random thermal motion of the fluid particles [2]. A different source of noise

was put forward a bit later by Schottky. He concentrated his attention on the

fact that the charge being transported by an electric current is not continuous

but that electrons which constitute the current carry portion of charge. In

this situation (shot-) noise appears which is due to the discrete nature of

the electron charge [3]. An experiment performed by Johnson confirmed

Schottky’s idea [4] and thereby discovered flicker noise (also called 1/f noise,

because its intensity grows like 1/f at small frequencies f). He observed

flicker noise while trying to detect shot noise which is expected to be more

or less constant as a function of frequency f ; and he found an additional

contribution to spectral density

S(ω) ∝ 1/ω (7.1)

(here ω ≡ 2πf) which was “flickering” in time. Apart from shot noise and

1/f noise, Johnson measured also equilibrium noise (the so-called Nyquist-

Johnson noise) [5, 6].

Some general remarks about noise: in classical mechanics, we can describe

the motion of each individual particle to any accuracy. In quantum mechanics
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7.1 Introduction

this is in principle not possible (at least in the standard theory) and all we

can hope is a statistical description is the world. However, even classical

systems which are huge the motion of particles cannot be described it in all

details. Thus, we study averages of quantities like 〈I(t)〉 which describes

collective motion but not the properties of individual electrons. In order to

obtain more detailed knowledge of the individual behavior, we can extend

our study to include fluctuations 〈δI2〉 and correlation functions like that

〈δI(t1)δI(t2)〉, where δI(t) is a defined by

δI(t) = I(t)− 〈I(t)〉. (7.2)

Theoretically, the average 〈I(t)〉 is taken over the ensembles, experimentally

over the time. The deviation δI(t) shows dynamics of system, which is not

visible in 〈I(t)〉 which depends on time only in a case of collective motion of

all the particle, e.g., in the presence of time-dependent potential.

The quantity describing noise is the second-order correlator 〈δI(t1)δI(t2)〉.
When the process is stationary, this correlator depends only on time differ-

ence t = t2 − t1 and the spectral density is defined as the Fourier transfor-

mation of the correlator

S(ω) =

∫
dt eiωt〈δI(0)δI(t)〉. (7.3)

The correlator 〈δI(t1)δI(t2)〉 is called an irreducible correlator (denoted by

double brackets),

〈〈I1I2〉〉 ≡ 〈δI1δI2〉 = 〈I1I2〉 − 〈I1〉〈I2〉; (7.4)

the lower index indicates the time at which the correlator has to be evalu-

ated. Of course, it is also possible to study higher order correlators. In the

following, we write down the decomposition of the higher order irreducible

correlators into correlators and irreducible correlator of lower order. The

third order irreducible correlator is given by

〈〈I1I2I3〉〉 ≡ 〈I1I2I3〉− 〈I1〉〈〈I2I3〉〉− 〈I2〉〈〈I1I3〉〉− 〈I3〉〈〈I1I2〉〉− 〈I1〉〈I2〉〈I3〉;
and the fourth-order irreducible correlator is

〈〈I1I2I3I4〉〉 ≡ 〈I1I2I3I4〉 − 〈I1〉〈I2〉〈I3〉〈I4〉−
〈I1〉〈〈I2I3I4〉〉 − 〈I2〉〈〈I1I3I4〉〉 − 〈I3〉〈〈I1I2I4〉〉 − 〈I4〉〈〈I1I2I3〉〉−

〈〈I1I2〉〉〈〈I3I4〉〉 − 〈〈I1I3〉〉〈〈I2I4〉〉 − 〈〈I1I4〉〉〈〈I2I3〉〉. (7.5)
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These expressions for the correlators depend on the fact that the classical cor-

relation functions are symmetric under interchange of their arguments. This

is not the case for quantum mechanical correlators. The proper definition of

quantum mechanical correlators, we will discuss later.

7.2 Shot noise[3]

Lets us first comment on shot noise; here, we follow the original work of

Schottky. He discussed the charge transport of a vacuum tube and suggested

that the process of emitting of electrons from the first electrode is the Pois-

sonian, i.e., each electron has a probability to be emitted per unit time and

this probability does not depend on what is happening to the other electrons

— whether they emitted or not, see Figure 7.1. For a Poissonian process,

je -
je -

Figure 7.1: A vacuum tube. Biasing the capacitor place with a large voltage,

electron are knocked out of the emitter plate, transverse the vacuum tube and

are reabsorbed by the second plate. Due to the discreteness of the electron,

the current cannot flow continuous and the current shows shot noise.

it is known that the variance is equal to the average,

〈δN2〉 = 〈N〉, (7.6)

where N is a number of emitted electrons; even more all the higher order

irreducible correlators are equal to the average,

〈〈Nk〉〉 = 〈N〉, (7.7)

here k is integer and k > 0. Correspondingly, the noise of the transmitted

charge (Q = −eN) is given by

〈〈Q2〉〉 = e2〈N〉 = e〈Q〉 = e〈I〉t, (7.8)
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7.2 Shot noise

where −e is the electron charge, 〈I〉 > 0 is the average current, and t is

the time of the observation. We want to relate this result to the spectral

density S(ω) introduced above. Note that the transmitted charge Q is just

the time-integrate current

Q =

t∫

0

I(τ)dτ, (7.9)

such that we can evaluate

〈〈Q2〉〉 =

t∫

0

dt1

t∫

0

dt2 〈〈I(t1)I(t2)〉〉 =

t∫

0

dt1

t∫

0

dt2 〈〈I(0)I(t2 − t1)〉〉. (7.10)

in terms of the current. Next, we introduce the spectral density, cf. (7.3),

S(ω) =

∫
dt eiωt〈〈I(0)I(t)〉〉. (7.11)

Substituting the Fourier transformed formula into (7.9) yields

〈〈Q2〉〉 =

t∫

0

dt1

t∫

0

dt2

∫
dω

2π
e−iω(t2−t1)S(ω)

=

∫
dω

2π
S(ω)

t∫

0

dt1

t∫

0

dt2 e
−iω(t2−t1). (7.12)

Performing the integration over time, we arrive at the final result,

〈〈Q2〉〉 =

∫
dω

2π
S(ω)

sin2 ωt/2

(ω/2)2
. (7.13)

Remark. Now let us make a few notes about noise spectral density. For zero frequency
ω = 0 formula (7.11) gives

S(0) =

+∞∫

−∞
〈〈I(0)I(t)〉〉 dt.

S(0) ω = 0 is determined not just by long times.

Remark. S(ω). If I(t1) and I(t2) commutes I(t1)I(t2) = I(t2)I(t1) and time invariant
〈〈I(t1 + τ)I(t2 + τ)〉〉 = 〈〈I(t1)I(t2)〉〉 we can write 〈〈I(0)I(−|t|)〉〉 = 〈〈I(−|t|)I(0)〉〉 =
〈〈I(0)I(|t|)〉〉 and perform the integration over the half space

S(0) = 2

+∞∫

0

〈〈I(0)I(t)〉〉 dt.
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Remark. To replace
+∞∫

−∞

dω

2π
S(ω) −→ 2

+∞∫

0

dω

2π
S(ω)

is wrong in general, since if ω > kBT (or ω > eV ) the spectral density is not symmetric
S(−ω) 6= S(ω).

Remark. S(ω) is real in quantum and classical cases. In quantum (time-invariant case),

S∗(ω) =
(∫

〈I(0)I(t)〉eiωtdt

)∗
=

∫
〈I(t)I(0)〉e−iωtdt =

∫
〈I(0)I(−t)〉e−iωtdt =

∫
〈I(0)I(τ)〉e−iωτdτ

so, we have
S∗(ω) = S(ω)

If S(ω) does not diverge at ω . 1/t we can use the representation of the

δ-function in form [7]

lim
t→∞

sin2 ωt

ω2t
= πδ(ω)

and obtain from (7.13)

〈〈Q2〉〉 = t

∫
dω δ(ω)S(ω) = tS(0). (7.14)

This formula is valid for tÀ τcorr, where τcorr is so-called correlation time.

Remark. Alternative to (7.12) and (7.13) we can write

t∫

0

dt1

t∫

0

dt2〈〈I(0)I(t2 − t1)〉〉 =

+∞∫

0

dτ

t∫

0

dT 〈〈I(0)I(τ)〉〉 = t S(0),

where we have substituted T = (t1 + t2)/2 and τ = t2 − t1.

Comparing (7.14) and (7.8), we finally obtain Schottky’s formula

S(0) = e〈I〉, (7.15)

which is valid for all values of 〈I〉. The remarkable feature of this formula is

that the charge quantum e appears in it. The vacuum tube experiment was

used to measure charge of electron e. The accuracy was not very good (e.g.

one of the reason was the flicker noise). Still it is some method which gives

the charge of the electron with accuracy of about 10%. Recently, people used

111



7.3 Shot noise in a long wire

this effect to demonstrate fractional charge in the fractional quantum Hall

effect at ν = 1/3 [8, 9]

S(0) = e∗〈I〉, (7.16)

double-charge of a Cooper pair in normall metall–superconductor system [ref]

S(0) = 2e〈I〉. (7.17)

For certain systems, the statistics is not Poissonian; for example, in a quasi

one-dimensional quantum point contact the noise is given by [10]

S(0) = e〈I〉(1− T ), (7.18)

where T is the transmission probability. Let us give a hint, why the result

is different: in a quantum mechanical system the reason for the fluctuations

is different. For the vacuum tube the reason for fluctuations of emitted

electrons is more or less classical. We can think that the occupation numbers

of the electrons much less then unity, n ¿ 1. And then just due to small

fluctuations in occupation numbers you may have electrons in the electrode

to emit or may have not; and this is the origin of current fluctuations. Now

in quantum case it is more involved. Fermi statistics becomes important

and the reason for the fluctuations is the probabilistic nature of quantum

mechanics: whether an electron which is send to the obstacle is transmitted

or not cannot be known and the outcome is purely random.

Remark. The “trick” 〈〈Q2〉〉 = t S(0) works also for 〈〈Qn〉〉 = t 〈〈In
0 〉〉, see later in Chap-

ter 10 for full counting statistics.

7.3 Shot noise damping in a long wire

Later on, we will show more rigorously that Schottky answer (7.15) is valid

for the noise in a tunnel junction with T ¿ 1. Here, we model for long

wire which is compose of two tunnel junctions with small transparencies T1,

T2 ¿ 1. Then if we have just one tunneling junction noise will be still

〈δI2〉ω ≡ S(ω) = e〈I〉. (7.19)

Now the question appear if in a conductor we have two tunneling junctions

in series. First, we consider the situation where the region 2 in Figure 7.2

in between the tunneling junctions is large enough such that electrons are
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m1 m2 m3
V1 V2 V3

Figure 7.2: Tunneling elements (two junctions) with conductivities G12, G23

and capacitances C12, C23. The voltage drop across left junction is δV12 =

V2 − V1, δV23 = V3 − V2.

already thermalized.1 Then because of a finite capacitance and the fluctua-

tions of the charge, a time-dependent voltage δV builds up across the region

2: at zero frequency total noise is S(ω)/2 for the identical junctions. We

discuss this case to explain that in a long macroscopic wire shot noise will

be damped. And roughly speaking the “strength” of damping will be some

correlation length divided by the total length of the wire Lcorr/L; or, if we

consider wire with N tunnel junctions this “strength” will be 1/N . So, zero

frequency noise of such a system consisting N tunneling junctions will be

S(0) =
1

N
e〈I〉. (7.20)

Next, let us write equations for the two tunneling junctions. We will do it in

the framework of so-called quasi-stationary fluctuations and Langevin forces.

In this approach first we write equation motion for the quantity we study.

Second we say that it is not all and we shall add to it some random forces

(Langevin forces), which are for example not included in kinetic (master)

equation.

Fluctuations of the current in the contact between regions 1 and 2 (contact

12) is given by

δI12 = δV12G12 + δj12, (7.21)

where G12 is a conductance of mentioned junction and δj12 is a random in-

trinsic shot noise appearing in it. The first term represents quasiclassical

equation, the second one — Langevin force. We also can use the same equa-

tion for the contact between regions 2 and 3 (contact 23)

δI23 = δV23G23 + δj23. (7.22)

1We considered such a model for describing the Peltier effect.
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Then let us suppose that region 2 contains charge Q and we obtain for contact

12 and 23

− δV12 =
δQ

C12

(7.23)

and

δV23 =
δQ

C23

, (7.24)

where C12 and C23 are a capacities of the 12 and 23 junctions respectively.

Here we suppose that voltages at the left and at the right are equal, V1 = V3

and only V2 fluctuates. Then we can use the fact that T1,2 ¿ 1 and write

quasistationary differential equation for the charge on the island Q,

d

dt
δQ = δI12 − δI23. (7.25)

Now we switch to the Fourier transformed values. Equation (7.25) transforms

to

− iωδQω = δI12,ω − δI23,ω, (7.26)

using (7.23) it can be rewritten in the form

− iω(−δV12,ωC12) = δI12,ω − δI23,ω (7.27)

and then

δV12,ω =
1

iωC12

(δI12,ω − δI23,ω). (7.28)

Here ω is a frequency which has arisen in the Fourier transformation. Sub-

stituting (7.28), (7.23), and (7.24) into (7.21) and (7.22) we have the system

of two equations




δI12,ω =
G12

iωC12,ω

(δI12,ω − δI23,ω) + δj12,ω,

δI23,ω = −C12

C23

G23

iωC12

(δI12,ω − δI23,ω) + δj23,ω.

(7.29)

Solving this system of linear equations for I12 and denoting τ12 = C12/G12,

τ23 = C23/G23 we obtain the answer

δI12,ω =
δj23,ωτ23 + δj12,ωτ12(1− iωτ23)

τ12 + τ23 − iωτ23τ12

. (7.30)

At zero frequency ω = 0 the answer is

δI12,0 =
δj23,0τ23 + δj12,0τ12

τ12 + τ23

. (7.31)
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Now let us calculate Fourier transformed irreducible current-current correla-

tor of two tunnel junctions system (this correlator is often called just “noise”)

〈δI12,−ωδI12,ω〉 =
τ 2
12〈δj2

12,0〉+ τ 2
23〈δj2

23,0〉
(τ12 + τ23)2

. (7.32)

Then note that for each junction Langevin forces give its own shot noise and

〈δj2
12,0〉 = 〈δj2

23,0〉 = e〈I〉. We obtain

〈δI12,−ωδI12,ω〉 = e〈I〉 τ 2
12 + τ 2

23

(τ12 + τ23)2
. (7.33)

Also we can rewrite this result via resistivity of each junction R12 = 1/G12

and R23 = 1/G23

〈δI12,−ωδI12,ω〉 = e〈I〉 R2
12C

2
12 +R2

23C
2
23

(R12C23 +R23C23)2
. (7.34)

In case τ12 = τ23 we have

〈δI2
12,0〉 =

1

2
e〈I〉. (7.35)

In case of τ12 À τ23 we approach the limit of one tunnel junction

〈δI2
12,0〉 = e〈I〉. (7.36)

For high-frequency limit ω À 1/τ where τ = min{τ12, τ23} from (7.30) we

have

δI12,ω ' δ12,ω, (7.37)

therefore is we suppose that 〈δj2
12,ω〉 = const (white noise) and 〈δj2

12,ω〉 = e〈I〉

〈δI2
12,ω〉 = e〈I〉. (7.38)

For the N identical junctions and zero frequency similarly to (7.31) we have

δI =
1

N

N∑
i=1

ji (7.39)

and for the noise

〈δI2〉ω=0 =
1

N2

N∑
i=1

〈j2
i 〉ω=0 =

N

N2
e〈I〉 =

1

N
e〈I〉. (7.40)

This formula coincides with the predicted result (7.20).
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U1
γ21 γ12

Figure 7.3: (a)&(b) Telegraph noise is random jumping between two states

with probabilities γ12 and γ21. (c) Double well potential. E.g. the probability

of jump from state |1〉 to |2〉 is due to the finite temperature and is about

γ12 ∼ e−U1/kBϑ.

7.4 Telegraph noise

The reason to present telegraph noise is two fold. First, there are noise

sources which produce telegraph noise in many materials (e.g., charge im-

purities). Second, telegraph noise is the basic ingredient in order to discuss

1/f noise which we will do in the next section. The main idea to explain

1/f (flicker) noise is the following: In (almost) all large system there are a

large set of relaxation times present. Taking into account all these relaxation

times can lead to a 1/f dependence of the noise power (we will see how it

work).

Telegraph noise is a quantity x(t) which fluctuates in time between two

values x1, x2, see Figure 7.3(b). Physically this can by an impurity in a

double-well potential like Fig. 7.3(c). As was shown by Altshuler [ref] and

independently by Stone [ref] that in coherent conductor if one impurity

changes its position by a distance L much larger than the Fermi wavelength

λF (LÀ λF) the conductance changes by

δG ∼ e2

h

1

(Gh/e2)α
. (7.41)

(find the power α). That an impurity jumps between two stable positions

happens often in mesoscopic systems, e.g., in heterostructures in the Coulomb

blockade regime or in qubits. These impurities are one of the reason why

the devices do not operate perfectly; the impurity jumps and induces some

uncontrollable fluctuations. Lets consider a simple example. We have a

quasi one-dimensional channel forming a QPC. As mentioned in Chapter 3.3

transport there is dominated by the top of the effective potential. If the

top of the potential is near the Fermi energy, then small fluctuations of the
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potential due to the different position of the impurity change the transmission

probability considerably.

The first experiment on noise of a quantum point contact was performed

by Tsui [ref] (who also discovered the fractional quantum Hall effect [11]).

He mostly observe this flicker noise. Partly he observe shot noise damping

in a sense that at plato he had low noise; lower than Shottky value. But

nevertheless the dominant was telegraph signal due to impurity. ???

At the moment suppose that impurity jumps between two states and the

process can be described classically. Then, we have a fluctuating conductance

G(t) as a function of time which can be equal to G1 or G2 for x = x1, x2,

respectively. The current through contact is given by I(t) = V G(t). Again

suppose that probability to find the impurity in position |1〉 in state and

conductance G1 is P1(t); to find impurity in state |2〉 and conductance G1 is

P2(t). Naturally

P1(t) + P2(t) = 1. (7.42)

If we know the rates γ12 and γ21 we can write down a master equations for

probabilities P1(t) and P2(t)

∂P1

∂t
= −γ12P1 + γ21P2, (7.43)

using (7.42), we can rewrite it

∂P1

∂t
= −(γ12 + γ21)P1 + γ21. (7.44)

Let us consider the case when at t = 0 the impurity was in state |1〉,

P1(0) = 1. (7.45)

Let us call the solution for probability P1(t) of the (7.44) with the condi-

tion (7.45) P̃1(t). This conditional probability is

P̃1(t) =
γ12

Γ
e−Γt +

γ21

Γ
, (7.46)

where Γ = γ12 + γ21. The same conditional probability (with the condition

P2(0) = 1) for the second state is

P̃2(t) =
γ21

Γ
e−Γt +

γ12

Γ
. (7.47)
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If we go to infinity we should say that the probabilities P1(t) and P2(t)

are saturated and left part of the equation (7.44) is zero. We have

P1(+∞) =
γ21

Γ
, P2(+∞) =

γ12

Γ
. (7.48)

The averages of the probabilities are defined by their relaxed values, 〈P1(t)〉 =

P1(+∞), 〈P2(t)〉 = P2(+∞).

Now we are equipped to calculate the current-current (or, what is the

same, conductance-conductance) correlator

〈I(0)I(t)〉 = V 2〈G(0)G(t)〉. (7.49)

Sometimes correlator 〈G(0)G(t)〉 is called conductance fluctuations. Now let

us use the expression for G(t)

G(t) = G1P1(t) +G2P2(t) (7.50)

and calculate the correlator

〈G(0)G(t)〉 = 〈P1〉G1

{
G1P̃1(t) +G2(1− P̃1(t))

}
+

〈P2〉G2

{
G2P̃2(t) +G1(1− P̃2(t))

}
. (7.51)

Let us explain this formula. In the first term 〈P1〉 is the probability to find

system in the initial state |1〉. We should multiply it by conductance in this

state G1 and by the conductance G(t) under assumption (7.45). And then

add the same term for opposite initial term. Formula (7.51) can be rewritten

by introducing ∆G = G1 −G2 and we have

〈G(0)G(t)〉 = 〈P1〉G1

{
G2 + P̃1(t)∆G

}
+ 〈P2〉G2

{
G1 − P̃2(t)∆G

}
. (7.52)

Now lets use expressions for conditional probabilities (7.46) and (7.47)

〈G(0)G(t)〉 = 〈P1〉G1

{
G2 +

(γ12

Γ
e−Γt +

γ21

Γ

)
∆G

}
+ 〈P2〉G2

{
G1−

(γ21

Γ
e−Γt +

γ12

Γ

)
∆G

}
= 〈P1〉G1

{
γ21

Γ
G1 +

γ12

Γ
G2 + ∆G

γ12

Γ
e−Γt

}
+

〈P2〉G2

{
γ21

Γ
G1 +

γ12

Γ
G2 −∆G

γ21

Γ
e−Γt

}
. (7.53)

Taking into account that

γ21

Γ
G1 +

γ12

Γ
G2 = 〈P1〉G1 + 〈P2〉G2 = 〈G〉
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we obtain for t > 0

〈G(0)G(t)〉 = 〈G〉2 + ∆G
(
〈P1〉G1

γ12

Γ
− 〈P2〉G2

γ21

Γ

)
e−Γt

= 〈G〉2 + ∆G2〈P1〉〈P2〉e−Γt. (7.54)

The irreducible correlator is

〈〈G(0)G(t)〉〉 = ∆G2〈P1〉〈P2〉e−Γt. (7.55)

For t < 0 we can write

〈〈G(0)G(t)〉〉 = 〈〈G(t)G(0)〉〉 = 〈〈G(0)G(−t)〉〉.
So, for any time

〈〈G(0)G(t)〉〉 = ∆G2〈P1〉〈P2〉e−Γ|t|. (7.56)

The spectral density for conductance fluctuations

SG(ω) =

∫
dt eiωt〈〈G(0)G(t)〉〉 (7.57)

can be easily calculated. We have standard Lorentzian shape

SG(ω) = ∆G2〈P1〉〈P2〉 2Γ

Γ2 + ω2
. (7.58)

And the same answer for current fluctuations in telegraph regime

SI(ω) = V 2∆G2〈P1〉〈P2〉 2Γ

Γ2 + ω2
. (7.59)

7.5 Flicker noise

Soon after discovering flicker noise, the idea was presented that the origin of

flicker noise are two-level fluctuators (impurities) producing telegraph noise

with different relaxation times. If we sum up it all this individual noise

sources, we get a 1/f dependence. The total spectral density S(ω) is a sum

of the spectral densities from the impurities (this statement is equivalent

to the fact that the individual telegraph processes are independent of each

other). The relaxation rates Γi of the impurities are distributed with the

distribution function f(Γ). For simplicity let us assume that ∆G is the same

for each object. The spectral density of the flicker noise can be written in

the form

S(ω) = V 2∆G2

+∞∫

0

2Γ

Γ2 + ω2
f(Γ) dΓ. (7.60)
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Q: What is the maximal value of Γ in the formula for spectral density (7.60)?

A: To be more realistic in the expression for the total spectral density, we have to in-
troduce an upper limit of integration, Γmax. The rate Γmax corresponds to the fastest
relaxation in the system which is of course not infinite. All our considerations is correct
only if ω ¿ Γmax.

Now we can assume a distribution function f(Γ) such as to get a 1/ω depen-

dence in (7.60).

Remark. By the way in experiment its not exactly 1/ω, but 1/ωα. The power α can
be less than unity, or can be even little bit more which indicates that process is already
nonstationary.

Assuming that

f(Γ) =
f0

Γ
, (7.61)

where f0 is some constant, we obtain a 1/ω dependence from (7.60)

S(ω) = V 2∆G2 πf0

ω
. (7.62)

The question remains which the fluctuators are distributed according to

Eq. (7.61) work. The jumping rate Γ is due to thermal excitations given

by Arrhenius law

Γ = Γ0 e
−U0/kBϑ, (7.63)

where Γ0 is some constant and U0 is the height of the barrier between the two

minima in the potential, see Fig. 7.3(c). The number of two-level systems

in the interval [Γ,Γ + dΓ] can be rewritten as the number of objects in the

corresponding interval in barrier height [U0, U0 + dU0] via

f(Γ) dΓ = f(Γ)
Γ0

kBϑ
e−U0/kBϑ|dU0| = n(U0) |dU0|. (7.64)

with a distribution

n(U0) =
Γ0

kBϑ
e−U0/kBϑ f

[
Γ0 e

−U0/kBϑ
]

=
Γ

kBϑ
f(Γ), (7.65)

of the potential barriers heights U0.

If we now suppose that distribution (7.65) of the barrier heights is con-

stant n(U0) = n0, we obtain the distribution (7.61) for the relaxation rates

with f0 = n0kBϑ.
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In general case we have

f(Γ)
Γ

kBϑ
= n(U0). (7.66)

Suppose the distribution n(U0) is powerlike

n(U0) ∝ 1

Un
0

. (7.67)

Using Eq. (7.63) and expressing U0 in terms of Γ,

n(U0) = kBϑ log
Γ

Γ0

(7.68)

we obtain only the logarithmic deviation from (7.61)

f(Γ) =
kBϑ

Γ

1

logn(Γ/Γ0)
(7.69)

In the case of exponential distribution of barrier heights U0

n(U0) ∝ e−U0/E. (7.70)

(E is some constant) we obtain power distribution for Γ

f(Γ) =
kBϑ

Γ

( Γ

Γ0

)kBϑ/E

. (7.71)

The flicker noise is an enormously general phenomena and its origin is not

understood on a more fundamental basis than the reasoning above. More

elaborate calculations have been performed taking into account electron-

electron interaction [12]. The authors found a noise spectrum proportional

to 1/ω for a 2D system.

Flicker noise can be observed everywhere: if you observe current flow,

or count cars on a street, . . . People analyze music in this sense (e.g., no

1/f -noise is observed in modern (rock) music which is close white noise plus

couple of frequencies while classical music produces 1/f noise).

7.6 Nyquist theorem (Nyquist-Johnson ther-

mal noise)

Next we discuss Nyquist-Johnson or thermal noise. We will perform the cal-

culation for classical noise at zero frequency; in Chapter 7.7, we will general
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this to the quantum mechanical case. Here we present a simplest way to

derive Nyquist-Johnson noise [6].

Consider the system which contains resistor with resistance R and ca-

pacitor with capacitance C shown at the Figure 7.4. At a finite tempera-

ture ϑ, there are current fluctuation for which we want to calculate the power

spectrum. We know from the equipartition theorem in classical statistical

C

R

−Q/2 Q/2

Figure 7.4: Scheme for Nyquist-Johnson thermal noise.

mechanics that in thermal equilibrium the average energy in the capacitor is

defined by the temperature ϑ and given by

〈EC〉 =
〈Q2〉
2C

=
kBϑ

2
, (7.72)

where Q is a charge at the capacitor. We are interested in the current I.

This current I is connected with voltage drop at capacitor V = Q/C by the

Ohm law, so we have

I =
Q

CR
. (7.73)

The speed of capacitor discharging dQ/dt is determined by this current and

we can write the differential equation for charge

− dQ

dt
=

Q

CR
. (7.74)

If we suppose that at t = 0 the charge at capacitor was Q0 this equation has

the solution

Q = Q0 e
−t/RC , (7.75)

i.e., the capacitor is discharged with the RC time constant. In the theory

of quasistationary fluctuations one assumes that the correlator 〈〈Q(0)Q(t)〉〉
satisfies the same differential equation as Q(t) itself. Therefore, we have

∂

∂t
〈〈Q(0)Q(t)〉〉 = − 1

RC
〈〈Q(0)Q(t)〉〉 (7.76)
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with the solution

〈〈Q(0)Q(t)〉〉 = 〈〈Q2(0)〉〉 e−t/RC . (7.77)

Remark. This approach is different from the Langevin approach which we introduced
before (see 7.3). Here, the treatment is the following: if we know what is the fluctuations
in the coincident times 〈〈Q2(0)〉〉 from somewhere (e.g. here from thermodynamics) then
we can find out how the correlator 〈〈Q(0)Q(t)〉〉 behaves in time. For the quasistationary
fluctuations with L̂1Q1 = 0 (where L̂ is some operator acting only on Q1 and is not acting
on Q0), we require L̂1〈Q0Q1〉 = 0.

The frequency dependence of the power spectrum can be obtained by Fourier

transforming Eq. (7.77). The spectral density is given by

SQ(ω) = 〈〈Q2〉〉 2(RC)−1

(RC)−2 + ω2
. (7.78)

Note that 〈〈Q2〉〉 is completely determined by equation (7.72) since 〈Q〉 = 0.

The zero frequency fluctuations are given by

SQ(0) = 2kBϑRC
2. (7.79)

The voltage correlator can be obtained by dividing Eq. (7.79) by C2. This

yields

SV (0) = 2kBϑR. (7.80)

For the spectral density of current-current fluctuations, we introduce con-

ductance G = 1/R and have

SI(0) = 2kBϑG. (7.81)

Equations (7.80) and (7.81) are called the Nyquist theorem for zero frequency

thermal noise. The analysis for finite frequency can be performed in the same

way but as soon as you go to the frequency higher than the temperature this

approach will break down because at ~ω > kBϑ the system is not longer only

determined by its thermodynamic properties.

7.7 The fluctuation-dissipation theorem

In the study of noise (e.g. see the original paper of Callen and Welton [13]

or Landau and Lifshitz [14]) it is customary to consider the symmetrized

current-current correlator

1

2
〈IωI−ω + I−ωIω〉.
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7.7 The fluctuation-dissipation theorem

The reason for this is that it is a real quantity. In fact it was shown by Lesovik

and Loosen [15] and then by Gavish et al [16], that at low temperatures in

a natural setup where one measure finite frequency noise the experimentally

measurable quantity is 〈I−ωIω〉 taken at ω > 0.

First, let us calculate linear response of a system to an external driving

field. The fluctuation-dissipation theorem connects the linear response co-

efficients with the fluctuations in the equilibrium. We will calculate linear

response in framework of the many-body perturbation theory. Suppose we

have a vector potential A such that the interaction part of the Hamiltonian

can be written as

V̂ (t) = −1

c

∫
dxA(x, t)Î(x, t), (7.82)

where c is the speed of light (in the following, we will set c = 1).

Of course also other quantities can be studied, e.g., the response of density

to some potential and so on. Now we will calculate current in the presence

of the time-dependent flux

A(x, t) = Aω(x)e−iωt (7.83)

and we will search for the linear response coefficient αω(x, x′) in the relation

Iω(x) =

∫
dx′Aω(x′)αω(x, x′)e−iωt (7.84)

In fact, as A(x, t) is a real quantity, Eq. (7.83) should in fact read A(x, t) =

[Aω(x)e−iωt +A−ω(x)eiωt]/2; we can always add up the negative and positive

frequency components at the end. As we have already shown before, the

average current is equal to

〈Î(t)〉 = Tr
{
ρ̂ Ŝ†(−∞, t)Î(t)Ŝ(−∞, t)

}
, (7.85)

where ρ̂ is the initial density matrix at time t→ −∞ and Ŝ is the evolution

operator given by

Ŝ(−∞, t) = T e(i/~)
R t
−∞ dt′

R
dx Î(x,t′)A(x,t′) (7.86)

Using (7.86) the formula (7.85) can be rewritten as

〈Î(t)〉 = Tr

{
ρ̂ T e(i/~)

R t
−∞ dt′

R
dx Î(x,t′)A(x,t′) Î(t)

× T̃ e−(i/~)
R t
−∞ dt′

R
dx Î(x,t′)A(x,t′)

}
. (7.87)
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Expanding to first order in A yields

〈Î(x, t)〉 =
i

~

t∫

−∞

dt′
∫
dx′A(x′, t′)〈Î(x, t)Î(x′, t′)− Î(x′, t′)Î(x, t)〉. (7.88)

Here, the first term Î(x, t)Î(x′, t′) originates from the expansion of Ŝ and the

second Î(x′, t′)Î(x, t) from the expansion of Ŝ†. Plugging in the harmonic

time-dependent for A(t), we obtain

〈Î(x, t)〉 =
i

~

t∫

−∞

dt′
∫
dx′Aω(x′) e−iωt′

× 〈Î(x, t)Î(x′, t′)− Î(x′, t′)Î(x, t)〉. (7.89)

Now, we go over to frequency space. Here we suppose that the process

is stationary and therfore 〈Î(0)Î(t) − Î(t)Î(0)〉 = 〈Î(0)Î(t) − Î(t)Î(0)〉 =

〈〈Î(0)Î(t)−Î(t)Î(0)〉〉+〈〈Î(0)Î(t)−Î(t)Î(0)〉〉. If the process is non-stationary,

we can still continue in the same fashion but we should be careful with in-

troducing two frequency for the correlator. Equation (7.89) transforms into

Iω(x) =
i

~

∫
dΩ

2π

t∫

−∞

e−iωt′dt′
∫
dx′Aω(x′)×

×
{
e−iΩ(t′−t)〈Î−ΩÎΩ〉 − e−iΩ(t−t′)〈ÎΩÎ−Ω〉

}
. (7.90)

After performing the integration over time, we obtain

Iω(x) =
i

~

∫
dΩ

2π

∫
dx′Aω(x′)e−iωt i(ω + Ω) + γ

(ω + Ω)2 + γ2

{
〈Î−ΩÎΩ〉 − 〈ÎΩÎ−Ω〉

}
,

(7.91)

with γ → 0+. Now we have to convert this expression to the δ-function plus

something and make the integration over Ω. For the real part of the fraction

in the (7.91) we can write

lim
γ→0

γ

(ω + Ω)2 + γ2
= πδ(ω + Ω).

The another part give the non-dissipative part of the response and it is some

labour to consider what to do with it because in addition to this contribution
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to current there appears the term which is proportional to ρA i.e. diamag-

netic response. In normal system there is a cancelation of this diamagnetic

term which come from the Fermi surface contribution of namely this part.

We will not do this because in fluctuation-dissipation theorem only impor-

tant part is the dissipative part of response. Therefore we take away this

imaginary part and obtain

Iω(x) =
i

2~

∫
dx′Aω(x′)e−iωt

{
〈Î−ω(x)Îω(x′)〉 − 〈Îω(x′)Î−ω(x)〉

}
. (7.92)

This is the answer.

Now let us write the expression for dissipative part of response. We

subtract from total αω(x, x′) the non-dissipative (reactive) term

α̃ω(x, x′) = αω(x, x′)− α′ω(x, x′) (7.93)

and for α̃ω(x, x′), we obtain

α̃ω(x, x′) =
i

2~

{
〈Î−ω(x)Îω(x′)〉 − 〈Îω(x′)Î−ω(x)〉

}
(7.94)

We switch now to the electric field

E = −∂A
∂t

(7.95)

if we substitute here time-dependent A from (7.83)

Eω = iωAωe
−iωt. (7.96)

The current is expressed in terms of the conductance G as

Iω(x) =

∫
dx′Gω(x, x′)Eω(x′). (7.97)

As ω → 0 the kernel in the last formula is constant and we have

Iω = Gω

∫
dxEω(x) = GωVω. (7.98)

Using formulae (7.92), (7.96), and (7.98) we have

S(−ω)− S(ω) = 2~ωGω. (7.99)

This is Kubo’s formula. The fluctuation-dissipation relation we will consider

below. As a matter of the fact, Kubo’s formula is also valid in a nonequilib-

rium situation, as was recently pointed out by Gavish et al. [17].
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Now we will obtain the fluctuation-dissipation theorem. The idea is to

connect S(ω) and S(−ω) by knowing the properties of density matrix and

substitute it to the Kubo formula (7.99).

First we calculate current-current correlator in quite general form

〈Î(x1, t1)Î(x2, t2)〉 = Tr
{
ρ̂ Ŝ†(t1)Î(x1)Ŝ(t1) Ŝ

†(t2)Î(x2)Ŝ(t2)
}
, (7.100)

where Ŝ(t) = e−iĤ0t/~ is an evolution operator which is connecting time-

dependent and time-independent current operators Î(t) = Ŝ†(t)Î Ŝ(t) and ρ̂

is a density matrix operator. Since it is a stationary problem and we suppose

to know Hamiltonian in general form we can rewrite it in matrix form. So

we go to some representation which diagonalize Hamiltonian and the density

matrix

〈Î(x1, t1)Î(x2, t2)〉 =
∑
n,m

〈n|ρ|n〉〈n|Î(x1, t1)|m〉〈m|Î(x2, t2)|n〉, (7.101)

here indices n and m cover everything (wave vectors, spin, . . . ). Introducing

ρnm = 〈n|ρ̂|m〉 and substituting evolution operators we have

〈Î(x1, t1)Î(x2, t2)〉 =
∑
n,m

ρnn〈n|eiĤ0t1/~Î(x1)e
−iĤ0t1/~|m〉×

〈m|eiĤ0t2/~Î(x2)e
−iĤ0t2/~|n〉 =

∑
n,m

ρnn〈n|Î(x1)|m〉〈m|Î(x2)|n〉 eiEnt1/~−iEmt1/~×

eiEmt2/~−iEnt2/~ =
∑
n,m

ρnn〈n|Î(x1)|m〉〈m|Î(x2)|n〉 ei(Em−En)(t2−t1)/~. (7.102)

Now lets go on to the frequency representation. In most general form

〈Îω1(x1)Îω2(x2)〉 =

∫
dt1e

iω1t1

∫
dt2 e

iω2t2〈Î(x1, t1)Î(x2, t2)〉 =

∑
n,m

ρnn〈n|Î(x1)|m〉〈m|Î(x2)|n〉 (2π)2 δ
[
ω1 − Em − En

~

]
×

δ
[
ω2 − En − Em

~

]
= (2π)2

∑
n,m

ρnn〈n|Î(x1)|m〉〈m|Î(x2)|n〉×

δ
[
ω1 + ω2

]
δ
[
ω1 − Em − En

~

]
= 2πδ (ω1 + ω2) 〈Îω1(x1)Î−ω1(x2)〉. (7.103)
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S(x1, x2;ω) = 〈Îω(x1)Î−ω(x2)〉 =

∫
dt eiωt〈Î(x1, 0)Î(x2, t)〉 =

2π
∑
n,m

ρnn〈n|Î(x1)|m〉〈m|Î(x2)|n〉 δ
[
ω − Em − En

~

]
. (7.104)

This expression is non-zero only at energies Em − En = ~ω. The diagonal

elements of density matrix are ρnn ∼ e−En/kBϑ and ρmm ∼ e−Em/kBϑ, where

ϑ is a temperature and kB is a Boltzmann constant. Thus

ρmm = e−~ω/kBϑρnn. (7.105)

Now let us change n↔ m in the sum in formula (7.104) and then substitute

the expression (7.105) for ρmm, we have

S(x1, x2;ω) = 2π
∑
m,n

ρmm〈m|Î(x1)|n〉〈n|Î(x2)|m〉 δ
[
ω − En − Em

~

]
=

2π
∑
m,n

ρmm〈m|Î(x1)|n〉〈n|Î(x2)|m〉 δ
[
− ω − Em − En

~

]
=

2π
∑
m,n

e−~ω/kBϑρnn〈m|Î(x1)|n〉〈n|Î(x2)|m〉 δ
[
− ω − Em − En

~

]
=

e−~ω/kBϑS(x2, x1;−ω). (7.106)

This formula connects S(x1, x2;ω) and S(x1, x2;−ω). By substituting this

relation to formula (7.99) we get the fluctuation-dissipation relation

(e~ω/kBϑ − 1)S(x1, x2, ω) = 2~ωGω(x1, x2). (7.107)

The standard formulation of the fluctuation-dissipation theorem is for

symmetrized current-current correlator. Let us modify our result. Let us

rewrite the expression for the symmetrized current-current using (7.106)

1

2
〈Îω(x1)Î−ω(x2) + Î−ω(x1)Îω(x2)〉 =

e~ω/kBϑ + 1

2
S(x1, x2, ω).

After that we can substitute the expression for S(x1, x2;ω) from (7.107) and

obtain

1

2
〈Îω(x1)Î−ω(x2) + Î−ω(x1)Îω(x2)〉 = 2~ωG(x1, x2;ω) coth

( ~ω
2kBϑ

)
. (7.108)
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Similar, we obtain for Bosons the Bose-Einstein occupation numbers N(ε) =

1/(eε/kBϑ−1). The fluctuation-dissipation theorem in its standard form reads

1

4
〈Îω(x1)Î−ω(x2) + Î−ω(x1)Îω(x2)〉 =

~ω[G(x1, x2;ω) +G(x2, x1;ω)]
{1

2
+N(~ω)

}
. (7.109)

7.8 Theory of measurements of the noise

In recording high frequencies it is suitable to use a resonance circuit (RC)

as a detector coupled by inductance with the investigated conductor so that

the RC is not affected by dc.

In this case the detector can be described by the equation of motion

φ̈ = −Ω2φ− γφ̇− λİ(t), (7.110)

where the external force is proportional to the derivative of the measured

current λİ(t), and the circuit quality should be high, so γ ¿ Ω. Then the

detector response is a changed charge at the capacitor, φ→ Q,

Q2 =

∫
dω

λ2ω2IωIω
(Ω− ω)2 + ω2γ2

. (7.111)

We have considered the same system in quantum-mechanical terms [15],

assuming the circuit to have a certain temperature ϑLC. Treating the RC as

an oscillator with infinitely small damping η, we have found the correction

to squared charge fluctuations, which is of second order with respect to the

inductance coupling constant. The result can be formulated as follows: the

measurable response of the considered detector at the resonance frequency

Ω is expressed via current correlators as:

Smeas = K
{
S(Ω) +NΩ

[
S(Ω)− S(−Ω)

]}
. (7.112)

where

S(Ω) =

∫
dt 〈Î(0)Î(t)〉 eiΩt. (7.113)

The frequency Ω is assumed to be positive in the expressions, NΩ are the

Bose occupation numbers of the oscillator, i.e.,

NΩ =
1

e~Ω/kBϑLC − 1
, (7.114)
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K is an effective constant of coupling between the quantum wire and the

RC, 〈A〉 = Tr{ρ̂Â}, where ρ̂ is the electron density matrix, and the time-

dependent current operators are determined in the ordinary way as I(t) =

eiĤtÎe−iĤt. The derived expression should be compared with the widely used

formula [14]

S(ω) =

∫
dω eiωt

〈 Î(0)Î(t) + Î(t)Î(0)

2

〉
. (7.115)

Note that the formula includes the symmetrized current correlator. The

symmetrization results from the fact that the current operators at different

times are not commutative, the symmetrization guarantees the correlators to

be reals, and is likely similar to the corresponding classical expression [14].

It is easy to check that the quantity

∫
dt Î(0)Î(t) eiΩt.

is Hermitian and S(Ω) is real [under the condition of time homogeneity

〈Î(t1)Î(t2)〉 = f(t1 − t2), as was assumed in the derivation of Eq. (7.112)]2

Formula (7.115) leads to the well known expression for the spectral density

of fluctuations in an equilibrium conductor [6]:

S(Ω) = 2G~Ω
[1

2
+

1

e~Ω/kBϑ − 1

]
(7.116)

This means that at zero temperature the fluctuations should be proportional

to frequency, which is usually interpreted as an analog of zero (vacuum)

oscillations in an electromagnetic field.

However, as is known from optical measurement, normal photodetectors

do not record zero oscillations, because the energy required to excite an atom

in the detector cannot be extracted from the vacuum (see, e.g., Ref. [19]. At

the same time, zero-point oscillations can be observed (although by a more

complicated way than for usual fluctuations) in the Lamb shift of levels [20],

in the Casimir effect [20], or with the use of the so-called Mandel quantum

counter [21], which is initially prepared in an excited state and hence can

record zero oscillations.

Analyzing Eq. (7.112), we will show that the RC can operate as a pho-

todetector, which is not affected by zero-point oscillations, or a quantum

2For the case we study correlations at different points the measurable (and real) quan-
tity is [S(x1, x2; ω) + S(x2, x1; ω)]/2, see Ref. [18].
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counter, but its response is never described by the standard Nyquist expres-

sion (7.116) as would be expected.

When the detected frequency greatly exceeds the temperature of the

LC-detector, NΩ is exponentially small, and the only non-vanishing term

in Eq. (7.112) is the positive part of the spectral density S(Ω), which de-

scribes the energy emission from the conductor to the RC. In this case the

LC-detector works as a normal photoreceiver. As an example, we express

S(Ω) in a coherent conductor with transmission coefficient T at zero temper-

ature and finite voltage as

S(Ω) =
2e2

h
T (1− T )(eV − ~Ω), (7.117)

when ~Ω < eV , and S(Ω) = 0 in the opposite case. Here we ignore the energy

dependence of the transmission coefficient. Expression (7.117) coincides with

the excess spectral density calculated by the symmetrized correlator (7.115).

If the frequency is much less than the temperature of the RC, i.e. ~Ω ¿
kBϑLC, the Bose numbers NΩ can be replaced by KBϑLC/~Ω. The difference

S(Ω)−S(−Ω) is negative, and for a quantum conductor with a transmission

coefficient weakly dependent on energy we obtain

S(Ω)− S(−Ω) = −2~ΩG, (7.118)

where G = (2e2/h)
∑

n Tn is the conductance.

Note that the singular behaviour of the spectral density at ~Ω = eV ,

which was found in Ref. [22] for the symmetrized expression S(Ω) + S(−Ω),

does not take place for S(Ω)−S(−Ω), therefore we can conclude that the only

singularity which can be measured at zero temperature and finite voltage is

determined by frequency cut-off of voltage in S(Ω).

Now we have for ~Ω ¿ kBϑLC:

Smeas = K(S(Ω)− 2GkBϑLC), (7.119)

The meaning of the negative term is clear: the LC-detector is “cooled”,

emitting energy into the conductor. Thus, in this limit the zero-point os-

cillations presented by S(−Ω) can be observed in some sense, but the final

result includes an expression different from the Nyquist formula (7.116).

If the conductor is in equilibrium (to an accuracy of a weak interaction

with the RC), we have at low frequencies: Smeas ∝ 2G(ϑe − ϑLC). This

expression is equal to zero, when the electron temperature ϑe is equal to
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the temperature ϑLC of the LC-detector, as was to be expected for the total

equilibrium of the system.

At intermediate frequencies kBϑe, eV ¿ ~Ω ¿ kBϑLC, the measuring

response is negative: Smeas = −2GkBϑLC.

When the low-frequency limit ~Ω ¿ eVbiaskBϑLC is considered, it makes

no difference whether we use S(Ω) or S(−Ω) or the Fourier transform of the

symmetrized expression (7.115) to determine the spectral density, since the

result will be the same with the accuracy of small corrections of the order of

~Ω/ev, kBϑ.
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Chapter 8

Noise: the second-quantized

formalism

8.1 Noise in non-equilibrium systems

In this chapter we will be interested in current noise in the mesoscopic con-

ductors and use scattering matrix approach more formally, in framework of

second quantization. To describe this noise we need second-order correlators

of the current operator Î(x, t). The most general formula for it is

〈Î(x1, t1)Î(x2, t2)〉 = Tr
{
ρ̂ Î(x1, t1)Î(x2, t2)

}
, (8.1)

where ρ̂ is a density matrix of the system. For the time-independent Hamil-

tonian of the system Ĥ0 we can write down current operator in Heisenberg

representation (see section 6.2)

Î(x, t) = eiĤ0t/~ Î(x) e−iĤ0t/~. (8.2)
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Here

Î = − ie~
2m

∑
σ

∞∫

0

dk′dk
(2π)2

{
ĉ†

Lσk′ ĉLσk(−ik′ − ik)t∗k′tke
i(k−k′)x+

+ ĉ†
Lσk′ ĉRσk

[
(−ik′)t∗k′e−ik′x(e−ikx + rke

ikx)− t∗k′e
−ik′x(−ike−ikx+

+ ikrke
ikx)

]
+ ĉ†

Rσk′ ĉLσk

[
(ik′eik′x − ik′r∗k′e

−ik′x)tke
ikx−

− (eik′x + r∗k′e
−ik′x)iktke

ikx
]

+ ĉ†
Rσk′ ĉRσk

[
(ik′eik′x − ik′r∗k′e

−ik′x)×

× (e−ikx + rke
ikx)− (eik′x + r∗k′e

−ik′x)(−ike−ikx + ikrke
ikx)

]}
(8.3)

is a current operator (6.44) which can be obtain by solving time-independent

Shödinger equation; the equation (8.2) describes its evolution.

Let’s start with simple one-channel problem for simplicity. Later we will

discuss how it was in n-channel case with n× n scattering matrix. But now

we have a simple problem — scattering on the potential. It has a solution

in the form of Lippman-Swinger scattering states (see section 2.4 for more

details): incident state from the left |L〉 or vice-versa incident state from

the right |R〉. In the first case the transmission and reflection amplitudes

will be tLR and rLL respectively; in the second case they are tRL and rRR. In

the absence of magnetic field H = 0 transmission amplitudes from left to

right and from right to left are equal, tRL = tLR. In general for H 6= 0 these

amplitudes are not equal tRL 6= tLR and due to the time reversal symmetry

tRL(H) = tLR(−H). In quite general case rLL 6= rRR (even for H = 0) but for

the symmetric barrier rLL = rRR. Let’s suppose the symmetric potential to

simplify our notations.

Using the same technic as in section 6.4 we obtain the answer for corre-
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lator (8.1) and then, making Fourier transformation for the spectral density

〈〈Î−ω(x1)Îω(x2)〉〉 =
2e2~2

(2m)2

∞∫

0

dε

hvε′vε

[

nL(ε
′)[1− nL(ε)](k + k′)2 Tε′Tε e

i(k−k′)(x1−x2)+

+ nL(ε
′)[1− nR(ε)]

{
(k + k′)2Tε′(1− Tε)e

i(k−k′)(x1−x2)+

(k′2−k2)Tε′e
−ik′(x1−x2)(rεe

ik(x1+x2)+r∗εe
−ik(x1+x2))+(k′−k)2Tε′e

−i(k+k′)(x1−x2)
}

+

+ nR(ε′)[1− nL(ε)]
{

(k + k′)2Tε(1− Tε′)e
i(k−k′)(x1−x2)+

+(k2−k′2)Tεe
ik(x1−x2)

(
rε′e

ik′(x1+x2)+r∗ε′e
−ik′(x1+x2)

)
+(k′−k)2Tεe

i(k+k′)(x1−x2)
}

+

+ nR(ε′)[1− nR(ε)]
{

(k + k′)2e−i(k−k′)(x1−x2) + (k + k′)2Rε′Rεe
i(k−k′)(x1−x2)−

− (k + k′)2
[
r∗ε′rεe

i(k−k′)(x1+x2) + r∗εrε′e
−i(k−k′)(x1+x2)

]
+

(k2−k′2)[r∗εe−i(k−k′)x1−i(k+k′)x2−rε′e
i(k+k′)x2+r∗ε′e

i(k−k′)x2e−i(k+k′)x1−rεe
i(k+k′)x1

]
+

(k2 − k′2)
[
r∗ε′Rεe

i(k−k′)x1−i(k+k′)x2 − rεRε′e
i(k+k′)x2−

Rε′r
∗
εe
−i(k−k′)x2−i(k+k′)x1 −Rεrε′e

i(k+k′)x1
]−

(k − k′)2
[
r∗ε′e

−i(k+k′)x1 − rεe
i(k+k′)x1

][
r∗εe
−i(k+k′)x2 − rε′e

i(k+k′)x2
]}]

, (8.4)

here ε′ = ε + ~ω, electron velocity vε =
√

2ε/m, and electron wave vector

k =
√

2mε/~.
For zero frequency ω = 0 spectral density (8.4) does not depend on coor-

dinates and we have

S(0) ≡ 〈〈Î−ω Îω〉〉
∣∣
ω=0

=
2e2

h

+∞∫

0

dε
[
nL(ε)[1− nL(ε)]T

2
ε +

nR(ε)[1− nR(ε)]T 2
ε + Tε[1− Tε]

{
nL(ε)(1− nR(ε)) + nR(ε)(1− nL(ε))

}]
.

(8.5)

Now let us consider some limits of the Eq. (8.5).

Zero temperature limit. In case of zero temperature nL/R(ε) = Θ(µL/R−
ε) and nonzero voltage V the formula for the spectral density (8.5) simplifies

and we obtain

S(0) =
2e2

h

µ+eV/2∫

µ−eV/2

dε Tε[1− Tε]. (8.6)
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8.2 Beam splitter

If in addition we suppose that transmission probability T does not depend

on energy dramatically, then we can replace the expression in the integral to

the its value at Fermi energy, Tε ≈ Tµ ≡ T ,

S(0) =
2e3V

h
T [1− T ]. (8.7)

This limit is gives us quantum shot noise. The source of this noise is the

choice of quantum alternative: to tunnel or neglect.

Equilibrium limit. Now let us consider the case with nonzero temper-

ature and zero bias voltage V = 0. In this case nL = nR ≡ n.

S(0) =
2e2

h

+∞∫

0

dε 2n(ε)[1− n(ε)]Tε. (8.8)

If we assume Tε to be constant and taking into account that
∫∞

0
dεn(ε)[1−

n(ε)] = kBϑ we recovered Nyquwest result for the noise

S(0) = 2kBϑG, (8.9)

where G is a conductance per spin.

In the Shottky limit of we assume nR = 0 and nL ¿ 1. In this limit

the spectral noise

S(0) =
2e2

h

+∞∫

0

dε nL(ε)Tε (8.10)

is proportional to the average current

〈Î〉 =
2e

h

+∞∫

0

dε nL(ε)Tε (8.11)

with coefficient which is exactly equals to the electron charge e,

S(0) = e〈Î〉. (8.12)

8.2 Beam splitter

Let us consider the symmetric bean splitter represented at Fig. 8.1. The

electrons comes from the reservoir 1 and can tunnel to the reservoirs 3 (with
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1 4

3

r

r

t

t

µ + eV

µ µ

µ

2

Figure 8.1: Symmetric splitter. The voltage V is applied to the lead 1; the

leads 2-4 are at zero potential. The probability to tunnel from the lead 1 to

4 is r, to 3 is t and there is no backscattering at all.

amplitude r) and 4 (with amplitude t) and does not reflect to back and to

the reservoir 2. Let us calculate the spectral density at zero frequency of

the current-current correlator 〈〈Î3Î4〉〉 between current in the 3rd and 4th

reservoirs. The definition of this kind of correlator

S34(ω) =

∫
dt 〈〈Î3Î4〉〉eiωt. (8.13)

Due to the absence of the backscattering we can take only the term in (8.3)

which is proportional to the ĉ†
Lσk′ ĉLσk (Lippman-Scwhinger state coming from

the left = from 1st lead), e.g. for the 3rd lead

Î3 = − ie~
2m

∑
σ

∞∫

0

dk′dk
(2π)2

(−ik − ik′)
[
ĉ†1σk′t

∗ + ĉ†2σk′r
∗][ĉ1σkt+ ĉ2σkr

]
ei(k−k′)x.

(8.14)

The current in the 4th lead can be obtained by replacing t↔ r in (8.14),

Î4 = − ie~
2m

∑
σ

∞∫

0

dq′dq
(2π)2

(−iq − iq′)
[
ĉ†1σq′r

∗ + ĉ†2σq′t
∗][ĉ1σqr + ĉ2σqt

]
ei(q−q′)x.

(8.15)

The irreducible correlator for zero temperature and zero frequency is given

by the term proportional to 〈ĉ†1σk′ ĉ1σq〉〈ĉ2σkĉ
†
2σq′〉 ∝ n1(ε)[1 − n2(ε)].

1 Here

1The similar term 〈ĉ†1σk′ ĉ1σq〉〈ĉ2σk ĉ†2σq′〉 ∝ n2(ε)[1− n1(ε)] is zero because the nonzero
regions of the functions n2(ε) and 1− n1(ε) do not intersect.
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8.2 Beam splitter

n1(ε) and n2(ε) are Fermi occupation numbers in 1st and 2nd leads. The

corresponding spectral density is

S34(0) =
2e2~2

(2m)2

∞∫

0

dε

hv2
ε

n1(ε)[1− n2(ε)]4k
2 t∗εrεt

∗
εrε . (8.16)

Note, that due to unitarity of the scattering matrix of the splitter we have

t∗εrε = −tεr∗ε , so t∗ε′tεr
∗
εrε′ = −Tε′Rε (here Tε = |tε|2 and Rε = |rε|2 = 1−Tε).

Therefore, the formula (8.16) transforms to

S34(0) = −2e2

h

∞∫

0

dε n1(ε)[1− n2(ε)]TεRε. (8.17)

And assuming Tε and Rε to be constant in the interval [µ . . . µ + eV ] we

obtain the answer

S34(0) = −2e3V

h
TεRε. (8.18)

The S34(0) is negative; this reflects the fact that although the wave function

is splitted, the electron can be found in only one arm.
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Chapter 9

Entanglement and Bell’s

inequality

9.1 Pure and entangled states

Le us consider the two noninteracting quantum mechanical subsystems, which

are described by wave functions |ψ1〉 and |ψ2〉. The state of the composite

system which can be presented in a tensor product of its subsystems states

|ψ(x1, x2)〉 = |ψ1(x1)〉 ⊗ |ψ2(x2)〉. (9.1)

is called product state of the system.

But all states of the system can not be described by (9.1). For example

the state

|ψ(x1, x2)〉 =
1√
2

[
|ψ1(x1)〉|ψ2(x2)〉 − |ψ1(x2)〉|ψ2(x1)〉

]
(9.2)

can not be written as a product of the (orthonormal) states |ψ1〉 and |ψ2〉
of the subsystems . All states of the system, which can not be written in

form (9.1) are called entangled. For the state (9.1) each particle 1 and 2 is

in pure state. Their density matrices are

ρ̂1 = |ψ1〉〈ψ1|, ρ̂2 = |ψ2〉〈ψ2|. (9.3)

For them Tr{ρ̂2
1,2} = Tr{ρ̂1,2} = 1 as must be for pure states [1]. In other

hand, density matrix of the 1st particle for the state (9.2) is

ρ̂1(x1) = Tr2

{|ψ〉〈ψ|} =
1

2

[
|ψ1(x1)〉〈ψ1(x1)|+ |ψ2(x1)〉〈ψ2(x1)|

]
, (9.4)
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1

Step 1

3

(a)

Detector

3

2

Step 2

Step 3

1

(b)

2 2

2 2

3

3

3

Figure 9.1: Quantum random walk at 1D lattice (a) and at 2D lattice (b).

where Tr2 is a trace over degrees of freedom of the 2nd particle. Then

Tr
{
ρ̂2

1

}
=

1

2
< 1 (9.5)

and thus, particle 1 is not in pure but in a mixed state, due to entanglement

with particle 2.

9.2 Entropy growth due to entanglement

In this section we discuss which path detector and will be interested in the

entropy of the system S with entanglement. The entropy is defined by usual

formula

S = −Tr
{
ρ̂ log2 ρ̂

}
. (9.6)

In the case the detector works perfectly and detect passed particle without

perturbing its motion, one can use the master equation to describe the prob-

ability to find particle after step number n in (symmetric) random walk, cf.

Fig. 9.1. In 1D case Fig. 9.1(a) the master equation is

Pj,→(n) =
1

2
Pj−1,→(n− 1) +

1

2
Pj+1,←(n− 1), (9.7)

where j is a number of segment between the scatterer, arrows show in which

direction the particle travels. And similar equation for opposite direction

Pj,←(n) =
1

2
Pj+1,←(n− 1) +

1

2
Pj−1,→(n− 1). (9.8)
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|χ↑〉

(b)(a)

|L〉 |R〉“+”r t

Detector, |χ〉
|χ↓〉

Figure 9.2: Entropy growing due to entanglement. (a) Scheme of the which

path detector setup; the state of the detector is characterized by spinor func-

tion |χ〉 (states |χ↑〉 or |χ↓〉) and the sate of the electron — by left |L〉
or right |R〉 arm. (b) The states of electron and detector are entangled:

r|χ↓〉|L〉 − t|χ↑〉|R〉, where |r|2 + |t|2 = 1.

Using (9.7), (9.8), and convexity of the function −x log2 x one can prove,

that entropy grows S(n+ 1) ≥ S(n). (In fact S(n+ 1) > S(n) striclty.)

Consider now in details a which path detector. At the entrance of it elec-

tron splitter is placed. The electron can propagate to the left arm (state |L〉)
with probability R = |r|2 and to the right arm (state |R〉) with probability

T = |t|2; T + R = 1. The transmission amplitudes t and r characterize

splitter, we assume that no backscattering takes place.

The state of detector is described by spinor function |χ〉 with basis states

“up” |χ↑〉 and “down” |χ↓〉. The initial state of the spinor is in the direction

of z axe

|χ(0)〉 = |χ↑〉 ≡
[

1

0

]
. (9.9)

The operator which rotates spinor |χ〉 around axe x to the angle ϕ is

Û(ϕ) = cos
ϕ

2
+ iσx sin

ϕ

2
=

[
cos(ϕ/2) i sin(ϕ/2)

i sin(ϕ/2) cos(ϕ/2)

]
. (9.10)

The state of the spinor rotated around axe x to the angle ϕ is

|χ(ϕ)〉 = Û(ϕ)|χ(0)〉 =

[
cos(ϕ/2)

i sin(ϕ/2)

]
. (9.11)

The density matrix, projected to the state when the particle is found in
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Detector, |χ〉

tr

PRPL

Figure 9.3: The detector has initial state |χ↑〉 and change it to |χ↓〉 if electron

moves through the left arm (state of the electron |L〉) and does not change

if electron moves through the right arm (state of the electron |R〉).

the lead L is

ρ̂ = R2|χ(ϕ)〉〈χ(ϕ)|+ T 2|χ(0)〉〈χ(0)|
−RTe−iφLR|χ(0)〉〈χ(ϕ)| −RTeiφLR|χ(ϕ)〉〈χ(0)|, (9.12)

where φLR = φL − φR is a difference between phases accumulated in left and

right arms.

The probability to find electron in the left after second splitter is a sum

of probabilities which correspond to the different states of the detector, |χ↑〉
and |χ↓〉

PL = 〈χ↑|ρ̂|χ↑〉+ 〈χ↓|ρ̂|χ↓〉. (9.13)

Usung (9.11) and (9.13) we obtain

PL = R2 + T 2 − 2RT cos
ϕ

2
cosφLR. (9.14)

Let us calculate the visibility of the interference in the left arm

V =
max{PL} −min{PL}
max{PL}+ min{PL} =

2RT | cos(ϕ/2)|
R2 + T 2

. (9.15)

For the symmetric splitter R = T the visibility is

V =
∣∣∣ cos

ϕ

2

∣∣∣. (9.16)

Interference decrease due to entanglement of the particle with the detector
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Emitter

Figure 9.4: Bohm emitter emits two particles in opposite directions with

opposite spins (possible realizations are marked with solid and dashed lines).

9.3 Bohm state

For product state

â†1↑â
†
2↓|0〉. (9.17)

Wave function in first quantize formalism is

1√
2

{
ϕ1(x1)χ↑(ξ1)ϕ2(x2)χ↓(ξ2)− ϕ1(x2)χ↑(ξ2)ϕ2(x1)χ↓(ξ1)

}
. (9.18)

Entangled state in second quantize formalism is

1√
2

{
â†1↑â

†
2↓ − â†1↓â

†
2↑

}|0〉 (9.19)

and in first quantize formalism

1√
2

{
ϕ1(x1)χ↑(ξ1)ϕ2(x2)χ↓(ξ2)− ϕ1(x2)χ↑(ξ2)ϕ2(x1)χ↓(ξ1)−

ϕ1(x1)χ↓(ξ1)ϕ2(x2)χ↑(ξ2) + ϕ1(x2)χ↓(ξ2)ϕ2(x1)χ↑(ξ1)
}
. (9.20)

We take here ∫
dxϕ∗1(x)ϕ2(x) = 0. (9.21)

Compare (9.18) to usual

[
ϕ1(x1)ϕ2(x2)± ϕ1(x2)ϕ2(x1)

][
χ↑(ξ1)χ↓(ξ2)∓ χ↑(ξ2)χ↓(ξ1)

]
. (9.22)

9.4 Bell type inequality

If x, x′, y, y′ are arbitrary variables and the conditions |x| ≤ 1, |x′| ≤ 1,

|y| ≤ 1, |y′| ≤ 1 are valid. Let us calculate the limitations for the absolute

value of (x − x′)y + (x + x′)y′. The modulus of the sum is equal or smaller

then sum of modulus

|(x−x′)y+(x+x′)y′| ≤ |(x−x′)y|+ |(x+x′)y′| ≤ |x−x′|+ |x+x′|. (9.23)
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��
��
��
��

ϕ0

−a

b

−b

a

(b)(a)

Figure 9.5: Entanglement in solid state physics: examples. (a) Setup 1. (b)

Setup 2.

Due to symmetries x→ −x and x′ → −x′ we can analyze last expression for

positive x and x′. For x > x′ it is equal to 2x, otherwise it is equal to 2x′.
Therefore it less or equal 2 and we have

|(x− x′)y + (x+ x′)y′| ≤ 2. (9.24)

Now let us suppose that

x = x(a, λ), x′ = x′(a, λ), y = y(a, λ), and y′ = y′(a, λ). (9.25)

Distribution ρ(λ),
∫
dλ ρ(λ) = 1. State of the detector is described by a,

and the state of the particle is described by λ.

Determine the result of measurements x(a, λ) in local hidden variables

theory (LHVT) averaging with ρ(λ) over (9.24), have

− 2 ≤ 〈xy〉 − 〈x′y〉+ 〈xy′〉+ 〈x′y′〉 ≤ 2. (9.26)

9.5 Entanglement in solid state physics: ex-

amples

Here we presented a few solid states setups, where Bell’s inequality violates,

cf Fig. 9.5.

9.6 Entanglement in solid state physics: one

more example

Let us consider one more violation of Bell’s inequality example (cf Fig. 9.6)

in more details. We should construct variables x and y which are in range
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nR

r = i sin θ r

χ

t = cos θ

1 2

r1,2 = i sin θ1,2 r1,2

t1,2 = cos θ1,2

nL

Figure 9.6: Violation of Bell’s inequality setup is formed by two splitters

[first one with r and t; second is controllable with r1,2 and t1,2] and detector

in the left arm.

[−1 . . . 1]; it is possible in the following way

x = nL − nR, y = NL −NR. (9.27)

Then the first term in Bell’s inequality looks like

〈xy〉 = 〈nLNL〉+ 〈nRNR〉 − 〈nLNR〉 − 〈nRNL〉. (9.28)

Now we postselect the state, when spin flipped due to one particle passed

|χ↓〉
(
r2|L〉|R〉+ t2|R〉|L〉) (9.29)

Let us calculate the averages in (9.28), the first one is

〈nLNL〉 =
1

2

∣∣i sin θ1 cos θ2 − i cos θ1 sin θ2

∣∣2

=
1

2

[
sin2 θ1 cos2 θ2+cos2 θ1 sin2 θ2−2 sin θ1 cos θ1 sin θ2 cos θ2

]
=

1

2
sin2(θ1−θ2)

(9.30)

In the same way we calculate

〈nLNR〉 =
1

2

∣∣i sin θ1i sin θ2 − cos θ1 cos θ2

∣∣2 =
1

2
cos2(θ1 − θ2) (9.31)
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Figure 9.7: Violations of Bell inequalities: optimal angles for pseudo-spin

which are violated of Bell’s inequality.

and

〈nRNR〉 =
1

2
sin2(θ1 − θ2), 〈nRNL〉 =

1

2
cos2(θ1 − θ2). (9.32)

Using these answers we obtain the average

〈xy〉 = − cos 2(θ1 − θ2). (9.33)

Now we construct the Bell’s inequality (9.26),

∣∣ cos 2(θ1 − θ2) + cos 2(θ′1 − θ2) + cos 2(θ1 − θ′2)− cos 2(θ′1 − θ′2)
∣∣ ≤ 2. (9.34)

The maximal value of the left side of the last relation reaches at angles

θ′2 − θ1 =
π

8
, θ1 − θ2 =

π

8
, θ2 − θ′1 =

π

8
, (9.35)

cf Fig. 9.7 and equal to

max
∣∣ cos 2(θ1 − θ2) + cos 2(θ′1 − θ2)+

cos 2(θ1 − θ′2)− cos 2(θ′1 − θ′2)
∣∣ = 2

√
2 > 2. (9.36)

This is the theoretical maximal violation of the Bell’s inequality. For the

state

|χ↓〉
(
rt|L〉|R〉+ rt|R〉|L〉) (9.37)

we have to substitute θ2 → −θ2.

Bibliography

[1] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, vol. 3 of Course

of Theoretical Physics (Pergamon Press, London, 1958).

148



Chapter 10

Full Counting Statistics

10.1 Introduction

In general, it is not only interesting to measure the average current through

a quantum wire but also higher moments,

〈Qn〉 =

∫ t

0

dt1 · · · dtn 〈I(t1) · · · I(tn)〉. (10.1)

Given the knowledge of all the cumulants, one can infer the noise such a

quantum wire would induce on a nearby quantum system without using the

assumption of Gaussian noise [1–3]. Furthermore, it allows for a precise

discussion of the detector properties of a quantum point contact coupled to

a nearby quantum bit [4]. Customary, all the information of the moments is

combined in the generating function

χ(λ) =
∑

n

〈(−Q/e)n〉
n!

(iλ)n = 〈e−iλQ/e〉; (10.2)

called the characteristic function of the “full counting statistics”; the arbi-

trary factor of −e has been introduced to render λ dimensionless. The char-

acteristic function provides all the information about the charge transport

and enables an easy determination of the moments via taking derivatives

〈(−Q/e)n〉 =
dn

d(iλ)n
χ(λ)

∣∣∣∣
λ=0

. (10.3)

However, cumulants defined via

〈〈(−Q/e)n〉〉 =
dn

d(iλ)n
logχ(λ)

∣∣∣∣
λ=0

(10.4)
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10.1 Introduction

are usually better suited than moments to characterize a random process.

They have the following important properties: (i) if the random variable is

shifted by an amount c then all cumulants n ≤ 2 remain invariant, 〈〈(Q +

c)n〉〉 = 〈〈Qn〉〉. (ii) they are homogeneous of degree n, 〈〈(cQ)n〉〉 = cn〈〈Qn〉〉.
(iii) given two independent random variables Q and Q̃, the cumulants are

additive, 〈〈(Q + Q̃)n〉〉 = 〈〈Qn〉〉 + 〈〈Q̃n〉〉. From the last property, one

deduce that 〈〈Qn〉〉 ∝ t for large times t larger than any correlation time in

the system. The argument goes as follows: for large times, the process can

be thought as being composed of many subprocesses which are independent

on each other (each of them being larger than the correlation time) and add

up to the total answer. As the number of subprocesses grows linear in t so

does the total cumulant.

Next, we want to introduce the notion of the number n of electrons trans-

fered in the time t which is related to the charge via Q = −en. The random

process is determined by the probabilities Pn that exactly n electrons are

transmitted in the time t, i.e.,

χ(λ) = 〈e−iλQ/e〉 =
∑

n

Pne
iλn. (10.5)

Note, that the assumption that n is an integer leads to the fact that χ(λ)

is periodic with period 2π. Given the characteristic function, the Pn can be

obtained by a Fourier transformation

Pn =

∫ 2π

0

dλ

2π
e−iλnχ(λ). (10.6)

In quantum mechanics, the problem of assigning a rigorous definition to

χ(λ) appears. There are at least two ways to define χ(λ). (a) we can use

the definition of the current operator

I(t) =
ie~
2m

[Ψ(x; t)∗Ψ′(x; t)−Ψ′(x; t)∗Ψ(x; t)] (10.7)

to calculate (10.1) which defines χI(λ). (b) we can calculate Pn using a pro-

jection of the wave function on the part describing the event of n transmitted

particles; in this case χ(λ) is by construction 2π periodic. It turns out that

the two approaches lead to different results and we have to model the specific

counter together with the quantum wire in order to obtain an unambiguous

result. The ambiguity can be traced back to the fact that in the quantum
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version of Eq. (10.1) no recipe for the ordering of the noncommuting cur-

rent operators is given. Taking (10.1) literally, the current operators should

be symmetrized. On the other hand, one could think about time ordering

them or any arbitrary other choice. In the following, the different approaches

pursued in the literature will be outlined.

Full counting statistics was first introduced in a pioneering paper by Lev-

itov and Lesovik in 1992 [5]. They used the definition (a) for a setup where

a single-mode quantum wire with transmission probability T is biased by a

voltage V at zero temperature. Their result

χ(λ) =
〈
e−iλ

R t
0 dt′I(t′)/e

〉

=
[
cos(λ

√
T ) + i

√
T sin(λ

√
T )

]N

, (10.8)

with the number of attempts N = 2eV t/h À 1, is periodic with periodicity

2π/
√
T which admits the interpretation that the charge is quantized in units

of e∗ = e
√
T . Measuring (10.1) would imply to be able to monitor the

current operator instantaneously; thereby, making it essentially a classical

random variable. However, any realistic measurement device averages the

current operator over a small time interval so that up to our knowledge no

measurement apparatus is expected to retrieve the full counting statistics

given by Eq. (10.8).

Having realized the necessity to include a realistic counting procedure

in the description of the full counting statistics, Levitov and Lesovik put

forward the idea of counting the electrons by an auxiliary spin 1/2 degree

of freedom [6, 7]; the procession frequency of the spin is proportional to

the magnetic field which itself is proportional to the current. Therefore,

the precession angle of the spin directly measures the transmitted charge Q.

More precisely, we the interaction between the spin and electrons in the wire

is given by

Hint = −1

c

∫
dx I(x)A(x) (10.9)

with A(x) the component along the wire of the vector potential generated

by the spin 1/2. In general, the interaction is long-ranged dipole interaction.

For simplicity (and to keep the charge quantization exact), we model the

interaction as a point interaction with a vector potential of the form

A(x) = A0 δ(x− x0)σz (10.10)
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where σz denotes a Pauli matrix, x0 is the position of the spin counter and

A0 is its interaction strength with the electrons in the wire. Accordingly, the

interaction Hamiltonian assumes the form Hint = Hint,+|↑〉〈↑| + Hint,−|↓〉〈↓|
with

Hint,± = ∓λ~I(x0)

2e
(10.11)

and λ = 2eA0/~c. Given an initial position of the spin counter described by

the density matrix ρs(0) at time t = 0, the counting statistics is expected

the reveal itself in the rotation angle of the spin (off-diagonal element of

the density matrix) after a time t. The time evolution of the off-diagonal

element of the spin density matrix is given by (assuming the density matrix

at time t = 0 to be separable with ρw(0) the density matrix of the electronic

subsystem)

ρs
↓↑(t) = Trw

[
e−i(Hw+Hint,−)t/~ ρe(0) ei(Hw+Hint,+/~)

]
ρs
↓↑(0) (10.12)

= Trw

([
e−iλ

R t
0 dt′I(x0,t′)/2e

]
−
ρw(0)

[
e−iλ

R t
0 dt′I(x0,t′)/2e

]
+

)
ρs
↓↑(0)

where the trace Trw is taken over the electronic degrees of freedom, Hw

denotes the Hamiltonian of the electronic subsystem. In going from the

first to the second line in (10.12), we went from the Schrödinger to the

interaction picture where the free evolution operator Hw dictates the time

evolution of the current operator I(x0, t); furthermore, [·]± denote time- and

antitime-ordering of the operators enclosed, respectively. Defining χ(λ) to

be ρs
↓↑(t)/ρ

s
↓↑(0), the generating function of the full counting statistics for a

spin counter assumes the form

χ(λ) =
〈[
e−iλ

R t
0 dt′I(t′)/2e

]
+

[
e−iλ

R t
0 dt′I(t′)/2e

]
−

〉
. (10.13)

The difference to (10.8) is due to the distinct ordering of the current op-

erators. Given the definition (10.13), the characteristic function of the full

counting statistics for the constant voltage setup

χ(λ) =
[
1− T + Teiλ

]N

(10.14)

is 2π periodic, which infers a quantization of the charge in units of e. Even

though for the constant voltage case the spin 1/2 definition of the full count-

ing statistics turns out to be 2π periodic there is no argument why this

should be the case for general setups, i.e., for general He and ρe(0). Even
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more, Shelankov and Rammer [8] have constructed an example where the

initial state is a superposition of electrons incoming from the left and from

the right where the generating function is only 4π periodic; note that even

though the spin counter does not always provide an answer where the charge

is quantized in units of e, the generating function is measurable and corre-

sponds to the dephasing of a qubit coupled to the quantum wire, cf. Ch. ??.

Shelankov and Rammer provided an alternative definition of χ(λ) which is 2π

periodic and where the associated Pn can be proven to be positive. This new

definition matches the idea to measure Pn directly, definition (b), proposed

by Muzykantskii and Adamov [9] and used by others [10, 11]. Performing

a measurement modeled by the operator Q =
∫∞

x0
dx |x〉〈x| which measures

the charge to the right of the counter at time t = 0 and comparing it to the

charge residing there at time t we can infer the number of electrons which

passed the counter during the time t. This measurement setup yields the

characteristic function

χ(λ) = 〈e−iλU†QU/eeiλQ/e〉, (10.15)

where U = exp(−iHwt) is the (unitary) evolution operator and 〈·〉 is an

average over an eigenstate of the operator Q, i.e., the particles are initially

either to the left or to the right of the scatterer thereby avoiding the states

which lead to a 4π periodic generating function in the case of the spin counter.

A different definition of χ(λ) was put forward by Nazarov using the Keldysh

formalism in a system without physical analogue which involves different

Hamiltonians Hw + Hint,± on the forward and backward time contour, cf.

Eq. (10.12) [12].

10.2 Full counting statistics of one single elec-

tron

Consider a wave packet (for t→ −∞ and traveling to the right)

Ψin(x, t) ≡ Ψf (x, t) =

∫
dk

2π
f(k) ei(kx−ωkt), (10.16)

centered around k0 > 0 with quadratic dispersion ωk = ~k2/2m and normal-

ization
∫

(dk/2π)|f(k)|2 = 1, incident on a scatterer characterized by trans-

mission and reflection amplitudes tk and rk. We place the qubit behind the
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scatterer to have it interact with the transmitted part of the wave function.

The transmitted wave packet then acquires an additional phase due to the in-

teraction with the qubit: for a magnetic interaction the extra phase accumu-

lated up to the position x amounts to δφA(x) = 2π
∫ x

dx′Ax(x
′)/Φ0, indepen-

dent of k; as x→∞ this adds up to a total phase λ/2 = 2π
∫∞
−∞ dxAx(x)/Φ0,

cf. (??). For an electric interaction, cf. (??), the situation is slightly more

involved: the extra phase can be easily determined for a slowly varying (qua-

siclassical) potential of small magnitude, i.e., e|ϕ| ¿ ~2k2
0/2m. Expanding

the quasiclassical phase
∫ x

dx′ p(x′)/~ with p(x) =
√

2m(E + eϕ(x)) to first

order in the potential ϕ(x) yields the phase δφϕ(x) = (e/~v)
∫ x

dx′ ϕ(x′)
which asymptotically accumulates to the value λ/2; its v-dependence is due

to the particle’s acceleration in the scalar potential and will be discussed in

more detail below. Moreover, note that φA changes sign for a particle mov-

ing in the opposite direction (k → −k) (i.e., under time reversal) whereas φϕ

does not. For a qubit placed behind the scatterer both magnetic and electric

couplings produce equivalent phase shifts. Depending on the state |±〉 of the

qubit, the outgoing wave (for t→∞)

Ψ±out(x, t) =

∫
dk

2π
f(k)e−i ωkt

[
rke
−ikxΘ(−x) + e±iλ/2tke

i kxΘ(x)
]

acquires a different asymptotic phase on its transmitted part. The fidelity is

given by the overlap of the two outgoing waves,

χ(λ, t) =

∫
dxΨ−out

∗
(x, t)Ψ+

out(x, t) =

∫
dk

2π
(Rk + eiλTk)|f(k)|2

= 〈R〉f + eiλ〈T 〉f , (10.17)

where Rk = |rk|2 and Tk = |tk|2 denote the probabilities for reflection and

transmission, respectively, and we have neglected exponentially small off-

diagonal terms involving products
∫
dkf(−k)∗f(k). The result (10.17) ap-

plies to both magnetic and electric couplings; its interpretation as the gen-

erating function of the charge counting statistics provides us with the two

nonzero Fourier coefficients P0 = 〈R〉f and P1 = 〈T 〉f which are simply

the probabilities for reflection and transmission of the particle. This result

agrees with the usual notion of ‘counting’ those particles which have passed

the qubit behind the scatterer. When, instead, the interest is in the system’s

sensitivity, we observe that the fidelity χ(λ, t) lies on the unit circle only for

the ‘trivial’ cases of zero or full transmission T = 0, 1, i.e., in the absence of
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partitioning, or for λ = 2πZ; the latter condition corresponds to no counting

or the periodic vanishing of decoherence in the qubit. On the contrary, in

the case of maximal partitioning with 〈R〉f = 〈T 〉f = 1/2, a simple phase

shift by λ = π makes the fidelity vanish altogether. Hence, partitioning

has to be considered as a (purely quantum) source of sensitivity towards

small changes, as chaoticity generates sensitivity in a quantum system with

a classical analogue.

The result (10.17) also applies for a qubit placed in front of the scattering

region provided the coupling is of magnetic nature (for the reflected wave,

the additional phases picked up in the interaction region cancel, while the

phase in the transmitted part remains uncompensated). However, an electric

coupling behaves differently under time reversal and the fidelity acquires the

new form

χ(λ, t) = eiλ
(
eiλ〈R〉f + 〈T 〉f

)
. (10.18)

Next, we comment on the (velocity) dispersion in the electric coupling λ:

the different components in the wave packet then acquire different phases.

To make this point more explicit consider a Gaussian wave packet centered

around k0 with a small spreading δk ¿ k0 and denote with λ0 the phase

associated with the k0 mode. The spreading δk in k generates a corresponding

spreading in δλ ≈ λ0(δk/k0) which leads to a reduced fidelity

χ(λ, t) = 〈R〉f + 〈eiλT 〉f ≈ Rk0 + e
iλ0−λ2

0(δk)2

2k2
0 Tk0 , (10.19)

where we have assumed a smooth dependence of Tk over δk in the last equa-

tion. The reduced fidelity for T = 1 is due to the acceleration and decelera-

tion produced by the two states of the qubit.1 The wave packets passing the

qubit then acquire a different time delay depending on the qubit’s state. As

a result, the wave packets become separated in space with an exponentially

small residual overlap for the Gaussian shaped packets.
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