Exercise Sheet IX

Problem 1 [Self-mappings of the sphere $\hat{\mathbb{C}}$.]:

- (a) A fixed point of a transformation w = f(z) is a point z_0 such that $f(z_0) = z_0$. Prove that each linear fractional transformation, with the exception of the identity transformation w = z, has at most two fixed points.
- (b) The equation

$$\frac{z-z_1}{z-z_2}\frac{z_3-z_2}{z_3-z_1} = \frac{w-w_1}{w-w_2}\frac{w_3-w_2}{w_3-w_1}.$$

implicitly defines a map w(z). Show that it is the unique linear fractional transformation that maps the three different points z_1 , z_2 and z_3 into three different points w_1 , w_2 and w_3 , respectively. [Hint: Let S and T be two distinct linear fractional transformations which satisfy this property, and consider the transformation obtained by composing S with the inverse of T.]

Problem 2 [Self-mappings of $\overline{\mathbb{H}}$.]: Let w(z) be the linear fractional transformation

$$w = \frac{az+b}{cz+d}.$$

- (a) Prove that if w(z) maps the real line of the z plane into the real line of the w plane, then a, b, c and d must all be real, except possibly for a common phase factor that can be removed without changing the transformation.
- (b) Show that (a) implies that w(z) maps the upper half z plane to the upper half w plane if and only if ad bc > 1.

Problem 3 [Upper half-plane $\bar{\mathbb{H}}$ with two boundary punctures.]: Consider $\bar{\mathbb{H}}$ with two punctures P_1 and P_2 on the real line, with coordinates $z=x_1$ and $z=x_2$, respectively. Consider another copy of $\bar{\mathbb{H}}$ with two punctures P_1 and P_2 on the real line, with coordinates $z=x_1'$ and $z=x_2'$, respectively. Are these two surfaces the same Riemann surface? Prove that they are, by exhibiting the conformal map that takes the punctures into each other while preserving $\bar{\mathbb{H}}$. You may have to write two conformal maps, depending on the sign of $(x_2'-x_1')/(x_2-x_1)$. What is the geometrical significance of this sign?

Problem 4 [Closing off the polygon in the Schwarz-Christoffel map.]: The differential equation

$$\frac{dw}{dz} = A(z - x_1)^{-\frac{\alpha_1}{\pi}} (z - x_2)^{-\frac{\alpha_2}{\pi}} \cdots (z - x_{n-1})^{-\frac{\alpha_{n-1}}{\pi}}$$
(1)

does not show the turning angle α_n at P_n because this point has been mapped to $z = \infty$. We aim to understand how this point at infinity works out.

(a) To find the turning angle at $z = \infty$, consider the large z-limit of (1):

$$\frac{dw}{dz} \simeq Az^{-\frac{1}{\pi}\sum_{i=1}^{n-1}\alpha_i}.$$

Define t = 1/z, and calculate $\frac{dw}{dt}$ as a function of t. Explain why your result shows that the turning angle is α_n .

(b) The differential equation

$$\frac{dw}{dz} = A(z - x_1)^{-\frac{\alpha_1}{\pi}} (z - x_2)^{-\frac{\alpha_2}{\pi}} \cdots (z - x_n)^{-\frac{\alpha_n}{\pi}},$$
(2)

with the last turning point P_n included as a finite point x_n , represents the situation where there is no corner at $z = \infty$. Prove that the polygon closes. For this, show that as we traverse the full real axis x, the change in w is zero:

$$w(x = \infty) - w(x = -\infty) = \int_{x = -\infty}^{x = \infty} dx \frac{dw}{dx} = 0.$$

[Hint: Use (2) and contour deformation. Argue that there is no contribution from half-circles around the x_i and around ∞ .]