Exercise Sheet III

Hand in by 22.10.2008

Problem 1 [Open strings ending on D-branes of various dimensions.]: Consider a world with d spacial dimensions. A Dp-brane is an extended object with p spacial dimensions: a p-dimensional hyperplane inside the d-dimensional space. We will examine properties of strings ending on a Dp-brane, where $0 \le p < d$. The case p = d where the D-brane is space filling is just the free string.

For a Dp-brane, let x^i , with $i=1,\ldots,p$, correspond to directions on the Dp-brane and x^a with $a=p+1,\ldots,d$, correspond to directions orthogonal to the Dp-brane. The Dp-brane position is specified by $x^a=0$, for $a=p+1,\ldots,d$. Open string endpoints must lie on the Dp-brane. Focusing on the $\sigma=0$ endpoint, we thus have

$$X^{a}(t, \sigma = 0) = 0,$$
 $a = p + 1, \dots, d.$

The motion of the endpoint along the D-brane directions x^i is free. We work in the static gauge.

(a) State the conditions satisfied by \mathcal{P}_0^{σ} , \mathcal{P}_i^{σ} and P_a^{σ} at the endpoint (no condition is a possibility!).

Prove that:

- (b) All boundary conditions are automatically satisfied if the string ends on a D0-brane.
- (c) For a string ending on a D1-brane, the tangent to the string at the endpoint is orthogonal to the D1-brane, and the endpoint velocity is unconstrained.
- (d) For a string ending on a Dp-brane, with $p \geq 2$, there are two possibilities:
 - (i) the string is orthogonal to the Dp-brane at the endpoint, and the endpoint velocity is constrained, or,
 - (ii) the string is not orthogonal to the Dp-brane at the endpoint, and the endpoint moves with the speed of light transversely to the string.

Problem 2 [Kasey's relativistic jumping rope.]: Consider a relativistic open string with fixed endpoints:

$$\vec{X}(t,0) = \vec{x}_1,$$
 $\vec{X}(t,\sigma_1) = x_2.$

The boundary condition at $\sigma = 0$ is satisfied by the following solution of the wave equation:

$$\vec{X}(t,\sigma) = \vec{x}_1 + \frac{1}{2} \left(\vec{F}(ct+\sigma) - \vec{F}(ct-\sigma) \right). \tag{1}$$

Here \vec{F} is a vector valued function of a single variable.

Figure 1: Kasey's relativistic rope

- (a) Use (1) and the boundary condition at $\sigma = \sigma_1$ to find a condition on $\vec{F}(u)$.
- (b) Write down the constraint on $\vec{F}(u)$ that arises from the parametrisation conditions

$$\left(\frac{\partial \vec{X}}{\partial \sigma} \pm \frac{1}{c} \frac{\partial \vec{X}}{\partial t}\right) = 1.$$

As an application, consider Kasey's attempts to use a relativistic open string as a jumping rope. For this purpose, she holds the open string (in three spatial dimensions) with her right hand at the origin $\vec{x}_1 = (0,0,0)$ and with her left hand at the point $z = L_0$ on the z axis, or $\vec{x}_2 = (0,0,L_0)$ (Figure 1). As she starts jumping we observe that the tangent vector \vec{X}' to the string at the origin rotates around the z axis forming an angle γ with it.

- (c) Use the above information to write an expression for $\vec{F}'(u)$.
- (d) Find σ_1 in terms of the length L_0 and the angle γ .
- (e) Calculate $\vec{X}(t,\sigma)$ for the motion of Kasey's relativistic jumping rope.
- (f) How is the energy distributed in the string as a function of z?