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Exercise 1 [Probability current ]: Show that the wave-function
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where A,B and k are constants and Ek = k2
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, is a solution of the time-dependent Schrödin-

ger equation with V (x) = 0. In addition, compute the probability current corresponding
to Ψk(x, t) and show that it equals
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Exercise 2 [Galilei invariance of the Schrödinger equation ]: Assuming that Ψ(x, t) is a
solution of the time-dependent Schrödinger equation for a free particle, i. e.
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show that
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is also a solution of the time-dependent Schrödinger equation. Here u is an arbitrary
constant. Interpret your finding in terms of the Galilei symmetry of the problem.

Exercise 3 [Particle in an expanding box ]: Consider a particle moving in the box [0, a],
and assume that it is, for t < t0, in the lowest (stationary) energy eigenstate
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At t = t0 the box is enlarged instantaneously to the interval [0, 2a]. Compute the wave
function of the particle for t > t0, and show that it is in a superposition of eigenstates
with energy

En =
n2π2~2
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, n = 2 or n = 1, 3, 5 . . .

Finally, deduce that the probability that the particle possesses the same energy as before
the enlargement of the box is 1/2.


