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Exercise 1. Bloch Oscillations

In the quasi-classical description of a wave-packet peaked around some quasi-momentum ~k the
group velocity is given by

ṙ =
1

~
∂εk
∂k

, (1)

while the change of the quasi-momentum is given by

~k̇ = Fext, (2)

with Fext the force due to applied external fields (in addition to the periodic potential).

(a) We focus on the one-dimensional tight-binding model with dispersion relation

εk = −2t cos(ka). (3)

Show that a uniform electric field does not accelerate the electrons but lets them oscillate
around some fixed position. This means that, for sufficiently large fields, all metals would
behave like insulators. Why has this effect never been seen in normal metals? What would
change if we considered semiconductor superlattices instead of metals?

Hint: Knowing that metals have a relaxation time of the order of ∼ 10−14s and a lattice
constant a ≈ 1Å, estimate the minimum field needed for observing Bloch oscillations. Bear
in mind that the quasi-classical approximation breaks down in the case of strong fields.
In order to know why/how Bloch oscillations were detected in semiconductor superlattices
you might want to read the paper by C. Waschke et al., Phys. Rev. Lett. 70, 3319 (1993)
and Physics Today 46(6), 34 (1993).

(b) We now add a small damping term to Eq. (2) and analyze the consequences. The rate of
change of the quasi-momentum is thus given by

~k̇ = Fext −
mṙ

τ
, (4)

where τ is the relaxation time. Show that this damping can lead to a vanishing of the
oscillations and thus to a stationary solution. What is the corresponding condition and how
does the stationary solution look like? Calculate then analytically k(t) for both situations
to verify your considerations.

Exercise 2. One-Dimensional Model of a Semiconductor

Let us consider electrons moving on a one-dimensional chain. We use the so-called tight-binding
approximation. Thus, we assume that each atom has a localized electron state and that the
electrons are able to hop between neighboring atoms. This hopping process describes the kinetic
energy term.

It is most convenient to use a second-quantized language. For simplicity, we assume the electrons
to be spinless fermions. Let ci and c†i be the creation and annihilation operators for an electron
at site i, respectively. The overlap integral between neighboring electron states is denoted by t.
Then, the kinetic energy operator is written as

H0 = −t
∑
i

(
c†ici+1 + c†i+1ci

)
. (5)
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We assume that the chain contains N atoms and in the following we set the lattice constant
a = 1. As a second step, we consider an alternating bipartite lattice which we model by a
potential of the form

V = v
∑
i

(−1)i c†ici. (6)

(a) Consider first the case v = 0. Show that the states created by

c†k =
1√
N

∑
j

e−ikjc†j (7)

are eigenstates of H0 with energy εk = −2t cos k. Here, k belongs to the first Brillouin
zone [−π, π).

(b) For v 6= 0 the creation operators for the new eigenstates can be obtained by means of a
so-called Bogoliubov transformation which we write as

a†k = ukc
†
k + vkc

†
k+π, b†k = vkc

†
k − ukc

†
k+π (8)

where u2k + v2k = 1 (both uk and vk may be assumed to be real) for all k in the reduced
Brillouin zone [−π/2, π/2). Diagonalize the Hamiltonian and show that it can be written
in the form

H0 + V =
∑

k∈[−π
2
,π
2
)

(
−Eka†kak + Ekb

†
kbk

)
, Ek =

√
ε2k + v2. (9)

(c) Consider now the ground state of the half-filled chain (N/2 electrons). What is the differ-
ence between the cases (a) and (b)?
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