
QFT II

Series 9.
FS 2014

Prof. Anastasiou

Exercise 1. Symmetry generators

Consider a scalar field theory and suppose we have a symmetry S of the classical action (for
simplicity, let’s assume it is also a symmetry of the Lagrangian) and the path integral measure,
that acts linearly on the fields,

ϕn(x) → ϕn(x) + ϵδϕn(x) = ϕn(x) + iϵ tnm ϕm(x) (1)

Show that the Noether charge Q associated to this symmetry generates the symmetry transfor-
mations, i.e.

[Q,ϕn(x)] = −tnmϕm(x) (2)

Hint. Q =
∫
d3xJ0(x⃗, 0), with Jµ(x) = ∂L

∂(∂µϕm(x))δϕm(x). Use the canonical commutation relations for

the fields and their conjugated momenta.

Exercise 2. Example of Goldstones theorem

Consider the following Lagrangian for N real scalar fields,

L = −1

2
(∂µΦ)

T (∂µΦ)− 1

2
m2ΦTΦ− λ

4

(
ΦTΦ

)2
, (3)

where ΦT = (ϕ1, · · · , ϕN ). Convince yourself that it has a global O(N) symmetry.

a) Now assume that m2 < 0. Find the vacua by finding the minima of the effective potential
V (Φ) at tree level (i.e. just the classical potential). You should find that a vacuum Φ0

satisfies

ΦT
0 Φ0 = −m2

λ
(4)

b) Show that the mass matrix M defined by

Mnm =
∂2V (Φ)

∂ϕn∂ϕm

∣∣∣∣
Φ=Φ0

(5)

has only one eigenvalue different from zero, i.e. there are (N − 1) massless particles in the
spectrum. Why exactly (N − 1)?

Hints. Find an explicit eigenvector with an eigenvalue different from zero. Then use the fact that

eigenvectors of symmetric matrices are orthogonal.

Exercise 3. Feynman Parametrization of Loop Integrals

Consider a generic scalar 2-loop integral in d dimension with n massless propagators 1/Ai raised
to some powers νi

Jd({νi}, {Q2
i }) =

∫
ddk1

i πd/2

∫
ddk2

i πd/2

1

Aν1
1 . . . Aνn

n
(6)
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You already know that we can rewrite the product of the propagators using the Feynman
parameters, i.e.

1

Aν1
1 . . . Aνn

n
=

Γ(ν1 + · · ·+ νn)

Γ(ν1) . . .Γ(νn)

∫ 1

0
dx1 . . . dxn δ

(
1−

∑
i

xi

)
xν1−1
1 . . . xνn−1

n

[
∑

i xiAi]
N

(7)

where N =
∑

i νi. Consider now the sum present in the denominator
∑

i xiAi. The most general
form of this sum is given by∑

i

xiAi = a k21 + b k22 + 2 c k1 · k2 + 2 d · k1 + 2 e · k2 + f (8)

where a, b, c, dµ, eµ, f are linear in the parameters xi.

(a) Performing the change of variables

kµ1 = Kµ
1 − cKµ

2

a
+Xµ (9)

kµ2 = Kµ
2 + Y µ (10)

where

Xµ =
c eµ − b dµ

P
(11)

Y µ =
c dµ − a eµ

P
(12)

P = ab− c2 (13)

show that the previous sum can be rewritten as∑
i

xiAi = aK2
1 +

P

a
K2

2 +
Q

P
Q = −a e2 − b d2 + 2 c e · d+ f P (14)

(b) Integrating out the shifted loop-momenta, show that the final result is

Jd({νi}, {Q2
i }) = (−1)d

Γ(N − d)

Γ(ν1) . . .Γ(νn)

∫ 1

0

(∏
i

dxi x
νi−1
i

)
δ

(
1−

∑
i

xi

)
PN− 3d

2 Qd−N

(15)

Hint. Use the formula ∫
ddki
i πd/2

1

[k2i −∆]n
= (−1)n

Γ(n− d/2)

Γ(n)
∆d/2−n

(c) For 1-loop integral we can find a similar formula. Starting from (8), show that in this case

P =
∑
i

xi = 1 Q = f − d2

Hint. First take the limit c → 0 to eliminate the common propagator of the two loops; then take

b = 0, eµ = 0 to eliminate the propagator of the second loop
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(d) Show that the final form of the integral is now given by

Jd({νi}, {Q2
i }) = (−1)d/2

Γ(N − d/2)

Γ(ν1) . . .Γ(νn)

∫ 1

0

(∏
i

dxi x
νi−1
i

)
δ

(
1−

∑
i

xi

)
PN−dQd/2−N

(16)
From this result we notice that the UV divergencies present in the integral, which are
related to the superficial degree of divergence, are encoded in the Gamma function in the
front.

(e) To convince yourself of this result, consider the 1-loop scalar triangle with

p21 = p22 = 0, (p1 + p2)
2 = s

Show first that in general

dµ =
∑
i

xi q
µ
i , f =

∑
i

xi q
2
i (17)

with qµi = qµi−1 + pµi−1, qµ1 = 0 (18)

so that

Q =

n∑
j=2

∑
i<j

xi xj sij , sij = (qi − qj)
2 =

(
j−1∑
m=i

pµm

)2

and k is the loop momentum. Then find the final result as in (16).
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