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Fig. 40-5. Swreamlines
fluid flow.

40-3 Steady flow—Bernoulli’s theorem

Now we want to return to the equation of motion, Eq. (40.8), but limit our-
selves to situations in which the flow is “steady.” By steady flow we mean that
at any one¢ place m the fluid the velocity never changes. The fluid at any point is
always replaced by new fluid moving in exactly the same way. The velocity picture
always looks the same—v is a static vector field. In the same way that we drew
“field lines” in magnetostatics, we can now draw lines which are always tangent
to the fluid velocity as shown in Fig. 40~5. These lines are called srreamimes.
For steady flow, they are evidently the actual paths of fluid particles. (In unsteady
flow the streamline pattern changes in time, and the streamline pattern at any
instant does not represent the path of a fluid particle.)

A steady flow does not mean that nothing 13 happening—atoms in the fluid
are moving and changing their velocities. It only means that dv/at = 0. Then
if we take the dot product of v into the equation of motion, the term v - @ X v
drops out, and we are left with

vl Lol
v v{p+¢+2”} 0. {40.12)

This equation says that for a small displacement in the direction of the fluid velocity
the quantity inside the brackets doesn’t change. Now in steady flow all displace-
ments arc along streamlines, so Eq (40.12) tells us that for all the points along a
streamline, we can write

f + :;-uz + ¢ = const (streamline). (40.13)

This is Bernoulli’s theorem. The constant may in general be different for different
streamlines; all we know 15 that the left-hand side of Eq. (40.13) 1s the same all
along a given streamline. Incidentally, we may notice that for steady irrotational
motion for which @ = 0, the equation of motion (40.8) gives us the relation

Pyl -
so that

% + .12. #* + ¢ = const (everywhere). (40.14)

1t’s just like Eq. (40.13) except that now the constant has the seme value throughout
the fluid.

veA!H/_‘,,

Fig. 40-6. Fluid motion in o flow tube.

The theorem of Bernoulli is in fact nothing more than a statement of the con-
servation of energy. A conservation theorem such as this gives us a lot of informa-
tion about a flow without our actually having to solve the detailed equations,
Bernouili’s theorem is so important and so simple that we would like to show you
how it can be denved in a way that is different from the formal calculations we
have just used. Imagine a bundie of adjacent streamlines which form a stream
tube as sketched in Fig. 40-6. Since the walls of the tube consist of streamlines,
no fluid flows out through the wall. Let's call the area at one end of the stream
40-6



tube A4,, the fluid velocity there »,, the density of the fld p,, and the potential
energy ¢:. At the other end of the tube, we have the corresponding quantities
Ay, 2. P2, and ¢y, Now after a short interval of time A1, the fluid at A | has moved
a distance vy A1, and the fluid at 4, has moved a distance vy At [Fig. 40-6(b)).
The conservation of mass requires that the mass which enters through A4, must be
equal to the mass which leaves through 4.. These masses at these two ends must
be the same:
AM = p‘Alv, Al = pgz{gvg At

So we have the equality
p1Ayvy = padav,. (40.15)

This equation tells us that the velocity varies inversely with the area of the stream
tube if p is constunt.

Now we calculate the work done by the fluid pressure. The work done on the
flurd entering at A, is py4 v, At, and the work given up at 4, is padyv, At The
net work on the fluid between 4, and 4, is, therefore,

P1dywy At — podau, AL,

which must equal the increase in the energy of a mass AM of fluid in going from
Ay to A,. In other words,

p,A;v, A — pgszz Al = AM(Eg —_ El)a (40.16)

where E is the energy per unit mass of fluid at A4 1> and E; is the energy per unit
mass at A;. The energy per unit mass of the fluid can be written as

E=4?+ ¢+ U,

where 3?2 is the kinetic energy per unit mass, ¢ is the potental energy per unit
mass, and U is an additional term which represents the internal energy per unit mass
of flud. The internal energy mught correspond, for example, to the thermal
energy in a compressible fluid, or to chemical energy. All these quantities can
vary from point to point. Using this form for the energies in (40.16), we have

Ay At 2Aarg AL ] I
E‘L'Al];) '—‘I)'Ayﬁ; =§"§+¢2+ Uz“‘zl'f““bx“‘ux

But we have seen that AM = pAr A1, s0 we get

ﬂ+%v?+¢x+U1=33+%r$+¢2+02, (30.17)
P1 P2

which is the Bernoulli result with an additional term for the mnternal energy. If
the fluid is incompressible, the internal energy term is the same on both sides, and
we get again that Eq. (40.14) holds along any streamline,

We consider now some simple examples in which the Bernoull integral gives
us a description of the flow. Suppose we have water flow:ng out of a hole near
the bottom of a tank, as drawn in Fig. 40-7. We take a situation in which the
flow speed v, at the hole is much larger than the flow speed near the top of the
tank: in other words, we imagine that the diameter of the tank is so large that
we can neglect the drop in the liquid level. (We could make a more accurate
calculation if we wished.) At the top of the tank the pressure is Py, the atmospheric
pressure, and the pressure at the sides of the jet is also Po. Now we write our
Bernoulli equation for a streamline, such as the one shown in the figure. At the
top of the tank, we take equal to zero and we also take the gravity potential
¢ to be zero. At the speed n,,,, and ¢ = —gh so that

Po = po -+ $pvZ, — pgh,

ol
Ed

cour = V2gh. (40.18)



Fig. 40-7. Flow from a tank. Fig. 40-8. With a re-entrant dis-

‘|
g j 'L S Fig. 40-9. The pressure is lowest
.&- + —where the velocity is highest.

charge tube, the stream contracts to one-
half the area of the opening.

This velocity is just what we would get for something which falls the distance A.
It is not too surprising, since the water at the exit gains kinetic energy at the ex-
pense of the potential energy of the water at the top. Do not get the idea, however,
that you can figure out the rate that the fluid flows out of the tank by multiplying
this velocity by the area of the hole. The fluid velocities as the jet leaves the hole
are not all parallel to each other but have components inward toward the center
of the stream-—the jet is converging. Afier the jet has gone a little way, the con-
traction stops and the velocities do become parallel. So the total flow is the velocity
times the area at that point. In fact, if we have a discharge opening which is just a
round hole with a sharp edge, the jet contracts to 62 percent of the area of the hole.
The reduced effective area of the discharge varies for different shapes of discharge
tubes, and experimental contractions are available as tables of efffux coefficients.

If the discharge tube is re-entrant, as shown in Fig. 40-8, it 1s possible to prove
in a most beautiful way that the efflux cocfficient 1s exactly 50 percent. We will
give just a hint of how the proof goes. We have used the conservation of energy
to get the velocity, Eq. (40.18), but there is also momentum conservation to
consider. Since there is an outflow of momentum in the discharge jet, there must
be a force applied over the cross section of the discharge tube Where does the
force come from? The force must come from the pressure on the walls. As long
as the efflux hole is small and away from the walls, the fluid velocity near the walls
of the tank will be very small. Therefore, the pressure on every face is almost
exactly the same as the static pressure in a fluid at rest—from Eq. (40.14). Then
the static pressure at any point on the side of the tank must be matched by an
equal pressure at the point on the opposite wall, except at the points on the wall
opposite the charge tube. If we calculate the momentum poured out through the
jet by this pressure, we can show that the efflux coefficient 1s 1/2. We cannot use
this method for a discharge hole like that shown in Fie. 40-7, however, because
the velocity increase along the wall right near the discflarge area gives a pressure
fall which we are not able to calculate.

Let’s look at another example—a horizontal pipe with changing cross
section, as shown mn Fig. 40-9, with water flowing in one end and out the
other. The conservation of energy, namely Bernoulli’s formula, says that the pres-
sure 18 lower in the constricted area where the velocity s higher. We can eassly
demonstrate this effect by measuring the pressure at different cross sections with
small vertical columns of water attached to the flow tube through holes small
enough so that they do not disturb the flow. The pressure is then measured by
the height of water in these vertical columns. The pressure 1s found to be less at
the constriction than it is on either side. If the area beyond the constriction comes
back to the same value it had before the constriction, the pressure rises again,
40-8



Bernoullr’s formula would predict that the pressure downstream of the con-
striction should be the same as it was upstream, but actually 1t 1s noticeably less.
The reason that our prediction is wrong 1s that we have neglected the frictional,
viscous forces which cause a pressure drop afong the tube. Despite this pressure
drop the pressure 1s defimitely lower at the constriction (because of the increased
speed) than it 1s on either side of 1t—as predicted by Bernoulh. The speed vy
must certarnly exceed #y to get the same amount of water through the narrower
tube. So the water accelerates in gomng from the wide to the narrow part. The
force that gives this acceleration comes from the drop in pressure.

We can check our results with another simple demonstration Suppose we
have on a tank a discharge tube which throws a jet of water upward as shown in
Fig 40-10. If the efux velocity were exactly \/2gh, the discharge water should
rise to a level even with the surface of the water i the tank. Experimentally, ut
falls somewhat short. Qur prediction is roughly right, but again viscous friction
which has not been ncluded in our energy conservation formula has resuited in
a loss of energy s

Have you ever held two pieces of paper close together and tried to blow
them apart? Try it! They come rogether. The reason, of course, 1s that the air has
a higher speed going through the constricted space between the sheets than it
does when it gets outside. The pressure between the sheets 1s Jower than atmos-
pheric pressure, so they come together rather than separatmg.

40-4 Circulation

We saw at the beginning of the last section that 1f we have an mcompressible
fluid with no circulation, the flow satisfies the following two equations:

Vv=0 VXuv=0 (40.19)

They are the same as the equations of electrostatics or magnetostatics in empty
space. The divergence of the electric field is zero when there are no charges, and
the curl of the electrostatic field is always zero. The curl of the magnetic field is
zero if there are no currents, and the divergence of the magnetic field is always
zero. Therefore, Egs. (40.19) have the same solutions as the equations for E in
electrostatics or for B in magnetostatics. As a matter of fact, we have already
solved the problem of the flow of a fluid past a sphere, as an electrostatic analogy,
in Section 12-5. The electrostatic analog is a umform electric field plus a. dipole
field. The dipole field 1s so adjusted that the flow velocity normal to the surface
of the sphere 1s zero. The same problem for the flow past a cylinder can be worked
out 1n a similar way by using a suitable line dipole with a umform flow field. This
solution holds for a situation in which the fluid velocity at large distances 1s con-
stant—both in magnitude and direction. The solution is sketched in Fig. 40-11(a).

There is another solution for the flow around a cylinder when the conditions
are such that the fluid at large distances moves in circles around the cylinder. The
flow is, then, circular everywhere, as in Fig. 40-11(b). Such a flow has a circulation
around the cylinder, although V X v is still zero in the fluid. How can there be
circulation without a curl? We have a circulation around the cylinder because the
line integral of v around any loop enclosing the cylinder 1s not zero. At the same
time, the line mtegral of v around any closed path which does not include the cyl-
inder is zero. We saw the same thing when we found the magnetic field around a
wire, The curl of B was zero outside of the wire, although a line integral of B
around a path which encloses the wire did not vamsh. The velocity field in an -
rotational circulation around a cylinder is precisely the same as the magnetic
ficld around a wire. For a circular path with its center at the center of the cylinder,
the line integral of the velocity 13

ygv'ds = Jre.

For irrotational flow the integral must be independent of ». Let’s call the constant
40-9

Fig. 40-10. Proof that v is not equal
to \/Zgh.

Fig. 40~11. (o} ideol flud flow past
a cylinder, (b} Cirevlation around o
cylinder. (c} The superposition of {a}
and (b).



