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Exercise 5.1 Coulomb Interaction - Excitons

In the following we consider the half-filled chain with alternating potential from the pre-

vious exercise:
1= —1 E (c cl+1+cl+1cl)+v E ccl

Electrons are charged partlcles and therefore they repel. We use a simplified version of
the Coulomb potential, namely, we assume that the energy of the system is increased by u
whenever two electrons are on neighboring atoms (note that due to the Pauli principle two
spinless fermions can not be on the same site.) In second quantized form the interaction
term is written as follows:

U=U Z NN 1 = Z Z+1Cz+lcz (1)

We assume that U < V,t. In this case, only the states with momentum in the vicinity of
+7/2 (this is where the Fermi surface is for the half-filled case) are considerably affected
by the Coulomb interaction.

1. Show that the repulsive interaction between the electrons leads to an attractive
interaction between electrons in the conduction band and holes in the valence band:
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Hint: Split the interaction into a sum containing explicitly the number operators
of even and odd sites, and fourier transform those number operators individually.
Realize that one can replace all the v;’s and wui’s by v_r/2 (= vr2) and u_r ),
(= urs2). The second term in the above equation is unimportant for the further
analysis and may be left out of consideration.

2. Let us now calculate the energy of an exciton. We make the following ansatz for
the wave function of an exciton with momentum g¢:

|1hg) = Z Akak+qu €2) (3)

where |(2) is the ground state of the system without interaction (at half filling), and
where the sum runs over the reduced Brillouin zone (indicated by the prime). Since
we consider a small u we expect that the electron-hole pair is only weakly bound
and that the wave function extends over a large region in real space. On the other
hand, in reciprocal space, we expect that the exciton state is strongly localized.
Therefore, we replace cos(k — k') in Eq. (2) by 1. Show that the energies w, (we are
setting i = 1) of the exciton excitations |¢,) are given by the solution of
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Discuss the solution graphically. How is the excitation spectrum modified by the
interaction?

3. Show that for small ¢ the energy of the exciton is
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where m* = V/(4t?) is the effective mass at the conduction band minimum.

4. In the following we will use the continuum limit by expanding Fj ~ V + 2k eR.

2m* )
Show that in the real space expression for the exciton state with ¢ = 0,
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f(r —r') is determined by the Fourier-transform of AY w.r.t. k! As the exciton is
a bound state, f(r — 1) is expected to decay exponentially as |r — /| — oo, i.e.
f(r—71") ~exp(—|r—7r'|/\). Derive an approximate expression for A (This gives
an estimate of the size of the exciton)!

Exercise 5.2 Tight-Binding Model of Graphene

In this exercise we will compute the low-energy band structure of graphene within a
tight-binding description, taking only nearest-neighbor hopping into account.

To get started, consider the electronic configuration of C. Carbon has four valence elec-
trons which occupy 2s% and 2p? orbitals. The hexagonal structure of the lattice suggests
that three of these valence electrons occupy hybrid sp?-orbitals to form covalent o-bonds
with their nearest neighbors (bonding angle 27/3). Due to the large binding energy, there
are no low-energy excitations involving these electrons. The remaining electron occupies
the p. orbital that sticks out of the planar lattice, and forms weaker m-bonds with the
neighboring atoms. Based on these considerations, it seems reasonable to focus solely
on the electrons in the p.-orbitals, so that the problem reduces to one electron and one
orbital per atom.
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Hint: Before embarking into the calculation, you may wish to refresh your memory about
the unit cell and Brillouin zone for a hexagonal lattice.

To write down the hopping Hamiltonian, divide the lattice into two sublattices A and B
as shown in Fig. 1 and introduce fermionic field operators a; and b; (i labels the site)
on these sublattices. Then argue that the hopping matrix element is the same for all b;



(1=1,2,3) in Fig. 1 for a given site. Use the Fourier transform,
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where N is the number of unit cells and R,; (Rs;) is the position of the i-th site on
sublattice A (B) to obtain a Hamiltonian of the form

e 3 ) (5 i) () »

Plot the band structure and show that the Fermi “surface” consists of two points by find-
ing the values of k for which the energy is zero.

Finally, obtain the low-energy structure by expanding the energy to leading order in small
deviations k around the Fermi points. The low-energy Hamiltonian can be shown to be
equivalent to the celebrated Dirac Hamiltonian for relativistic fermions (in a (2 + 1)-
dimensional space-time). Can you see what is 'relativistic’ about the dispersion relation?
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