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Exercise 1. Interaction picture

The interaction picture in quantum mechanics is an intermediate representation between the
Schroedinger picture and the Heisenberg picture.

Consider the Schoedinger problem

i ~ ∂t |ψ(t)〉 = H(t)|ψ(t)〉,

with the hamiltonian:
H(t) = H0 + V (t).

Assuming that H0 is an exactly solvable time-independent hamiltonian, the Interaction Picture
is defined as:

|ψI(t)〉 = U0(t0, t)|ψ(t)〉 (1)

AI(t) = U0(t0, t)AU(t, t0), (2)

where the evolution operator of H0 reads:

U0(t, t0) = eiH0(t−t0)/~.

(a) Show by explicit computation that the time evolution operator in the interaction picture
can be written as

UI(t, t1) = U0(t0, t)U(t, t1)U0(t1, t0) (3)

in agreement with (2).

(b) Starting from the formula above show that

i ~ ∂tUI(t, t0) = VI(t)UI(t, t0),

where VI(t) is just the potential V (t) in the interaction picture.

Exercise 2. Long-distance scattering

Starting from the form of the wave function for r →∞

ψ(~r ) = ei
~k·~r + f(θ)

eik r

r
, (4)

(a) Compute the probability density of the outgoing spherical plane wave:

~j =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

(b) Show that the asymptotic solution in (4) indeed solves the Schroedinger equation in the
limit r →∞ (

− ~2

2m
∇2 + V (r)

)
ψ(~r ) = Eψ(~r )

as long as the scattering potential satisfies

lim
r→∞

r V (r)→ 0.
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Exercise 3. Elastic-Scattering from a central potential

Consider the elastic scattering off a central potential

V (r) =
ε

r2
, with ε� ~2

2m
.

The Schroedinger equation reads as usual:

(
− ~2

2m
∇2 +

ε

r2

)
ψ(~r ) = Eψ(~r ). (5)

Using the usual partial-wave decomposition:

ψ(~r ) =
∞∑
l=0

Rl(r)Pl(cos θ),

compute the phase shifts δl(k) and the scattering amplitude f(θ),

Hint:

• Recall that:
∞∑
l=0

Pl(cos θ) =
1

2 sin θ/2
.
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